
HOCHSCHULE BOCHUM

– FACHBEREICH MECHATRONIK UND MASCHINENBAU –

MASTERTHESIS

INVESTIGATION OF CAPSULE NETWORKS

REGARDING THE EXPLAINABILITY

OF SEARCH ENGINE RANKINGS

UNTERSUCHUNG VON KAPSELNETZEN ZUR

ERKLÄRBARKEIT VON SUCHMASCHINENRANKINGS

Autor:

FELIZIA QUETSCHER

Matrikelnummer: 18105947

Studiengang: Mechatronik M.Sc.

Prüfer: Prof. Jörg Frochte

Zweitprüfer: Prof. Martin Potthast

Abgabedatum: 12.09.2021

ii

ABSTRACT (DEUTSCH)

Suchmaschinenrankings sind für Suchmaschinenbetreiber und –nutzer von zentraler

Bedeutung und daher Ziel zahlreicher Optimierungsansätze [1–3], die seit einiger Zeit

durch Methoden der Künstlichen Intelligenz (KI) unterstützt werden. [4–6] Bei der

Anwendung von KI-Methoden ist die Transparenz des verwendeten KI-Modells von

zentraler Bedeutung. In Bezug auf Suchmaschinenrankings bedeutet diese Transparenz

die Nachvollziehbarkeit der KI-generierten Trefferreihenfolgen. [7, 8]

Die Bildersuche und die inverse Bildersuche könnten von einer KI-gestützten Erken-

nung der Bildmotive profitieren. Zur Erkennung von Bildmotiven werden aktuell

”
Convolutional Neural Networks“ (CNN,

”
Faltende Neuronale Netze“) eingesetzt. [9–

11] Mit einem CNN können die Bilder nach ihrer Relevanz für einen Begriff basierend auf

der Sicherheit des CNN in einer Reihenfolge angeordnet werden. [12] Im Rahmen einer

transparenten KI-Anwendung ist es von großem Interesse, den Einfluss verschiedener

Bildbereiche auf die resultierende Sicherheit zu kennen und erklären zu können.

Verfahren wie
”
Grad-CAM“,

”
Guided Backpropagation“oder der

”
LIME“-Ansatz bieten

Einblicke in die Wahrnehmung des CNN. [13–15] Aus diesen Ansätzen zeigt sich, dass

CNN dazu zu tendieren, andere Merkmale als der Mensch für eine Entscheidung zu

nutzen.

Kapselnetze sind eine spezielle Modellarchitektur, über die das Erlernen menschlich

verständlicher Mermale ermöglicht wird. [16] Diese basieren auf CNN und enthalten

einen speziellen Bereich, die Kapseln, in denen Merkmale eines Objekts gespeichert

werden. Diese Merkmale sind beispielsweise die Größe oder Position eines Objekts und

somit für den Menschen nachvollziehbar.

In dieser Arbeit wird ein Kapselnetz in Tensorflow und Keras erstellt und auf zwölf

Klassen handgeschriebener Buchstaben des EMNIST-Datensets trainiert. [17] Die Test-

daten werden mithilfe der Vorhersagen der Kapseln in eine Reihenfolge gebracht. Zur

Erklärung dieser Reihenfolge wird ein Decoder verwendet, der die Merkmale des Bildes

extrahiert, die zur Erkennung der Klasse führen. Der Decoder wird zudem eingesetzt,

um die Merkmale zu ermitteln, die zur Erkennung anderer Klassen beitragen. Die Wahr-

nehmung innerhalb des Kapselnetzes wird zusätzlich mit künstlich erzeugten Bildern

überprüft, die eine Mischung aus zwei Klassen darstellen. Anhand dieser Bilder werden

die durch das Kapselnetz erkannten Merkmale ermittelt.

iii

iv

ABSTRACT (ENGLISH)

Search engine rankings are of great significance for their users and providers [1–3]. Thus,

they are highly optimized. [4–6] In recent years, the optimization is supported by models

of Artificial Intelligence (AI). For AI methods transparency is highly important. Related

to AI-generated search engine rankings the term 'transparency' refers to the comprehen-

sibility of the resulting ranking. [7, 8]

Image search and reverse image search could benefit from the application of AI-

supported image recognition. Currently, convolutional neural networks (CNN) are ap-

plied to recognize images [9–11] The images can be ranked by their relevance for a spe-

cific keyword based on the certainty of the CNN's prediction. [12] The knowledge and

comprehension of the image areas that impact the certainty of the CNN are the core of

explainable AI applications. [12]

Already existing approaches like 'Grad-CAM', 'guided backpropagation' and 'LIME' of-

fer insights into the perception of CNN. [13–15] They show, that CNN tend to use other

features than humans for their decisions.

Capsule networks are a specific model architecture that enables the learning of human-

understandable features. [16] Therein, special capsules are contained that store the fea-

tures of objects. These features are, for instance the size or the position of an object, and

are consequently comprehensible by humans.

In this thesis, a capsule network is created in Tensorflow and Keras and trained on twelve

classes of handwritten letters from the EMNIST dataset. [17] Based on the results for the

capsules, a ranking is created for the test images. To explain the ranking in more detail,

a decoder is used to examine the image areas that lead to the capsule network's decision.

Additionally the decoder is used to restore those image areas that contributed to the

recognition of other classes. The perception of the capsule network is additionally tested

with artificially created images in which two classes are mixed. The features detected by

the capsule network are explained based on these images.

v

vi

DECLARATION

Ich versichere, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe

angefertigt und mich anderer als der in den beigefügten Verzeichnissen angegebenen

Hilfsmittel nicht bedient habe. Alle Stellen, die wörtlich oder sinngemäß aus

Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht.

Der Durchführung einer elektronischen Plagiatsprüfung stimme ich hiermit zu. Die

Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch nicht

veröffentlicht. Ich bin mir bewusst, dass eine unwahre Erklärung rechtliche Folgen hat.

Ort, Datum Unterschrift Felizia Quetscher

vii

Unna, 12.09.2021

viii

Contents

CONTENTS

1 MOTIVATION 1

2 EXPLANATORY APPROACHES OF CONVOLUTIONAL NEURAL NETWORKS 3

3 THEORY OF CAPSULE NETWORKS 9

3.1 Exemplary Architecture of a Capsule Network 11

3.2 The Dynamic Routing Algorithm 13

3.3 Extension of the Example for Large-Scale Capsule Networks 23

4 DEVELOPMENT OF A CAPSULE-DECODER-NETWORK IN TENSORFLOW 31

4.1 Implementation of the Capsule-Decoder Network in Tensorflow 32

4.2 Training of the Capsule-Decoder-Network 40

5 CREATION OF IMAGE RANKINGS 43

5.1 Image Rankings with Squash Vectors of the Present Class 45

5.2 Impact of Non-Present Squash Vectors on the Decoded Image 50

5.3 Image Rankings for Transformed Images of Similar Classes 58

6 SUMMARY OF RESULTS 65

6.1 Discussion of the Results as Explanatory Approach 68

6.2 Further Research 69

ix

List of Figures

LIST OF FIGURES

Figure 1.1 Examples for the results of different explanation approaches 1

Figure 2.1 Example images of the result of the LIME approach 3

Figure 2.2 Example images of the result of the anchor approach 4

Figure 2.3 Example saliency maps created by the deconv network 5

Figure 2.4 Example saliency maps by the backpropagation approach 6

Figure 2.5 Example images for Grad-CAM approach 7

Figure 3.1 Single neurons to capsules 9

Figure 3.2 Weights and coupling coefficients between capsules 10

Figure 3.3 2-pixel exemplary images 11

Figure 3.4 Exemplary capsule network architecture 12

Figure 3.5 Calculation of two low-level capsules 12

Figure 3.6 Schematic visualization of dynamic routing between capsules 14

Figure 3.7 Comparison between squash vectors and prediction vectors 18

Figure 3.8 Capsule group formation 24

Figure 3.9 Architecture of a capsule-decoder-network proposed by [16] 27

Figure 3.10 Decoder proposed by [16] 29

Figure 4.1 Reduced EMNIST dataset 31

Figure 4.2 Flowchart for layers in the capsule-decoder-network 33

Figure 4.3 Flowchart for operations in the capsule layer 33

Figure 4.4 Tensorflow reshape() 35

Figure 4.5 Comparison of a dense layer and capsule layer 37

Figure 4.6 Tensorflow tile function 38

Figure 4.7 Tensorflow linalg.matmul() 39

Figure 4.8 Test loss and test accuracy 42

Figure 5.1 Visualization of squash arrays 44

Figure 5.2 Lengths distribution of squash vectors for class 'A' 46

Figure 5.3 SSIM for class 'A' 47

Figure 5.4 Ranking for class 'A' 48

x

List of Figures

Figure 5.5 Comparison of masked and unmasked prediction for class 'A' 53

Figure 5.6 Comparison of masked and unmasked prediction for class 'A' 53

Figure 5.7 Comparison of masked and unmasked prediction for class 'A' 54

Figure 5.8 Morphed images of the EMNIST dataset 59

Figure 5.9 Predictions for the morphed images of class 'K' and 'R' 60

Figure 5.10 Predictions for the morphed images of class 'C' and 'O' 61

Figure 5.11 Predictions for the morphed images of class 'A'and 'N' 62

xi

List of Tables

LIST OF TABLES

Table 3.1 Example calculation of one high-level capsule for equal weights 21

Table 3.2 Example calculation for one high-level capsule with different weights 23

Table 3.3 Overview of construction parameters for an exemplary capsule network 25

Table 3.4 Parameters of the capsule-decoder-network proposed by [16] 28

Table 4.1 Dimensions of named tensors in figure 4.3 36

Table 4.2 Applied training parameters 41

Table 5.1 Lengths overview for squash vectors of non-present classes 56

Table 5.2 Number of instances for largest squash vector of all non-present classes 58

xii

Motivation

1 MOTIVATION

Through the rise of machine learning applications the demand for explainability is in-

creasing. [7, 18] In the report 'Guidelines for Trustworthy AI' the explainability of an AI

system is classified as part of its transparency and it consists of two elements: 'the abil-

ity to explain [...] the technical processes of an AI system and the related human decisions'. [8]

When the term explainability is used in this thesis, it refers to the technical part of this

definition, which is further specified as requirement of an AI system to be 'understood [...]

by human beings' [8]. In this thesis, the term 'explainability' refers to the description and

comprehension of the reasons that led to a decision of an AI model.

One large field inside AI is the recognition and classification of objects on images. Cur-

rently, the application of convolutional neural networks (CNN) to this task is the state of

the art (i.e. [9–11]). Despite their excellent ability for image recognition, classification and

segmentation tasks, the decisions of CNN are not directly understandable by the human

intuition and thus, their decision-making is difficult to explain.

Multiple approaches provide methods that aim to explain the results and the vision in-

side CNN by cropping or highlighting important areas of the input image. This is done

either by the creation of approximated models [15, 19] or by the additional calculations

based on a trained model [13, 14]. Examples for different explanation approaches are

provided in figure 1.1.

f1 f2 f3 f4 f5

Covered Features

f1 f2 f3 f4 f5

Covered Features

Figure 1.1: Examples for the results of different explanation approaches. Left to right:
LIME-Approach - original image and result for class 'labrador' [15];
Grad-CAM approach - original image and result for class 'boxer' [13];
Gradient based approach - original image and result (no class provided, im-
age and map slightly cropped) [14]

However, there is no approach yet that leads to a general conclusive solution to explain

the vision of CNN. All current results reveal a strong problem with CNN: Despite a cor-

rect classification, the features that influenced this decision are neither always human-

understandable nor are they always self-explanatory for humans.

1

Motivation

Because of the difficult comprehensibility of 'common' CNN, in this thesis a further de-

velopment of CNN in examined, that promises an improved explainability of classifi-

cation tasks. The specialized architecture is proposed in [16] and described as 'capsule

network'. The core of capsule networks are capsules, that store feature information inside

a vector. These features are restored by a decoder and provide insights in the vision of

the capsule network.

By [16], the decoded images are presented for the MNIST dataset [20] and it was shown

that by changing the squash vector, features such as stroke thickness or angle change

based on the squash vector of the capsule network. The property of the capsule network

for human-understandable features lays the base for this thesis. Because capsule net-

works reach comparable results in simple image classification tasks like MNIST [16, 20],

they could be an option for a more intuitively understandable model. The goal of this

thesis is the examination of this squash vector for its applicability to support the creation

of human-understandable network decisions. This ability is tested by the creation of im-

age rankings.

The term 'image ranking' describes the categorization of images based on their affiliation

to a specific class. The higher the position of the image in the ranking, the more it is as-

sociated with the considered class. The assignment to the specific class is performed by

the AI model.

As basis for this topic an overview of existing explanation methods for CNN is provided

in chapter 2. Because capsules work significantly different from 'common' CNN, the the-

oretical background of their algorithm is explained in chapter 3. The capsule network

is implemented in Python using Tensorflow and Keras and the model is trained on 12

classes of handwritten letters from the EMINST dataset. [17] The development and the

training are described in chapter 4. With the trained model 256 images of each class are

predicted and ranked in an order based on the results of the capsules in chapter 5. In

section 5.1, the vision of the capsule network is examined by creating decoded images

that contain only the information for one class. In section 5.2, further elements recog-

nized by the capsule network are explored. In section 5.3, artificial images containing

two mixed letters are created and predicted to analyze the limits of the perception of the

capsule network. The results are summarized in chapter 6 and the explanatory approach

is evaluated in section 6.1.

2

Explanatory Approaches of Convolutional Neural Networks

2 EXPLANATORY APPROACHES OF CONVOLUTIONAL NEURAL

NETWORKS

Numerous approaches aim to increase the explainability of CNN. This section provides

an overview about the basic functionalities of three different methods for CNN explain-

ability: the LIME approach [15], the creation of saliency maps [21] and the Grad-CAM

algorithm [13]. These three approaches are selected because they introduce three dif-

ferent methods to explain the results of CNN and all of them are the base for further

research.

The LIME ('Local Interpretable Model-agnostic Explanations') approach is a general

method to explain single results of AI models. [15] The LIME approach is not limited

to any specific model architecture, which is described through the term 'model-agnostic'.

The term 'local interpretable' describes that the approach is performed for a single in-

stance, which is either an image or a short part of a text.

The core idea of the LIME approach is the substitution of a multidimensional non-human-

understandable model with an easier interpretable but linear model as approximation.

For this single model, a new dataset is created that solely contains variations of the single

image instance. Each image of the new dataset is modified in different regions, which are

either covered with noise or completely removed. By comparing the modified images,

the impact of each pixel on each class is examined. The most influential pixels for one

class prediction are described as 'super-pixels' and concatenated as key fragments for the

decision of the multidimensional model. Examples of the LIME approach are shown in

figure 2.1. [15]

f1 f2 f3 f4 f5

Covered Features

f1 f2 f3 f4 f5

Covered Features

f1 f2 f3 f4 f5

Covered Features

f1 f2 f3 f4 f5

Covered Features

Figure 2.1: Example images of the result of the LIME approach [15]. Left to right: Origi-
nal image, result for class 'labrador', result for class 'acoustic guitar', result for
class 'electric guitar'.

While the LIME approach creates a linear approximation of the substituted model,

it is further developed in the 'anchor' approach that generates non-linear approxima-

tions. [19] The concept of super-pixels is used in this extension as well, but they are not

3

Explanatory Approaches of Convolutional Neural Networks

found by masking areas. Rather, pixels are moved onto different images and the predic-

tion of the neural network is examined. A super-pixel is found if the probability for the

class, that belongs to the overlaid pixels, is high. In this case, these super-pixels were de-

cisive for the prediction of the class and are thus described as 'anchors'. Figure 2.2 shows

results for an example image presented in [19]. The mid-placed image shows the areas of

the left input image calculated as anchors for class 'beagle'. If these anchors are places on

another image, for example the right image of figure 2.2, the prediction probability P for

the class 'beagle' is still P ≥ 0.9.

Figure 2.2: Example images of the result of the anchor approach [19]. Left to right: Orig-
inal image, anchor for class 'beagle', image that generates a probability P for
class 'beagle' of P ≥ 0.9. [19]

The anchor of figure 2.2 shows, that in this case the body of the beagle is irrelevant for

the prediction. Instead, a part of the ground seems to impact the result. A similar phe-

nomenon occurs for the prediction of the class 'labrador' in figure 2.1: The lower part of

the dog's face is not included in the super-pixels, but a part of the blue shirt is included

for this class.

Despite the more or less reasonable location of super-pixels and anchors in figure 2.1 and

figure 2.2 as an explanation approach for single images, it does not provide an explana-

tion for the reason of the model's decision. Because they are model-agnostic they can only

calculate human-acceptable results but they cannot provide direct insides to the model.

The creation of saliency maps [14] and the Grad-CAM algorithm [13] provide deeper in-

sights into the vision of CNN. These approaches are applied on a specific model. The

resulting visualization of these methods is based on highlighting features on the original

image, either by a saliency map or by an activation heatmap, which are explained subse-

quently.

A saliency map displays the prominent regions of an image based on an applied algo-

rithm. In general, there are two different methods to generate saliency maps: The first

option is to use a 'deconv' network. [22] A deconv network means the direct copy from

the input layer to a specific layer of a CNN. The information of this layer is visualized by

4

Explanatory Approaches of Convolutional Neural Networks

transferring its output backwards through the deconv network. The result is an image

with the same dimensions of the input image.

Note, that the term 'deconv' network is chosen to avoid confusions with deconvolutional

layers, [23] which are applied in autoencoders. Deconv networks and deconvolutional

layers describe different entities.

Because simple copying is not possible for most layers, some modifications are applied

in the copied layers. For example the uninvertible maxpooling layer is substituted by a

'switch' layer. This layer uses the positions of the maximum values of its corresponding

pooling layer for the unpooling operation. [22]

Figure 2.3: Example saliency maps and their original images from [22] created by the
deconv network. The saliency maps in the upper row were created in the
fourth layer of the presented model, the saliency maps of the lower row were
created in the fifth layer of the model of [22].

The creation of saliency maps with the deconv network provides reasonable insights in

specific layers of a CNN. Related to figure 2.3 it is shown again, that the features are

perceived in different layers, so that they are independent from each other. This is again

related to the problem of the comparison between the vision in CNN and human vision.

The second possibility for creating saliency maps is the usage of backpropagation. [14] It

is assumed, that different pixels impact the result of the classification to a specific degree.

To infer the impact of each pixel onto the classification, the derivate of the class score

with respect to the image input is calculated. A high gradient stands for a high impact of

the pixel on the considered class. Pixels with higher impact on the prediction of a class

are displayed in stronger colors on the saliency map (figure 2.4). The creation of saliency

maps, either by the calculation of the gradient or by the application of a deconv network,

provide a reasonable possibility to visualize important areas for a class. As with the

aforementioned methods, they work to provide a rough orientation for the important

features. They do not directly explain the reason for the CNN's decision.

5

Explanatory Approaches of Convolutional Neural Networks

Figure 2.4: Example saliency maps and their original images from [14] created by using
the backpropagation approach. Images from [14] slightly cropped.

The last approach to explain the vision in CNN is the creation of activation heatmaps

based on the Grad-CAM (Gradient-weighted Class Activation Maps) algorithm. [13]

An activation heatmap displays the differently activated regions of an image in specific

colors. The Grad-CAM algorithm is an improvement of the CAM algorithm. [24] Within

the CAM approach, an activation heatmap is created by the usage of global average

pooling (GAP) layers. This layer is an alternative to a dense layer at the end of a CNN.

In a dense layer, the information of the last feature maps is flattened and fully connected

with the output neurons. With a GAP layer, the average activation of each feature map

is calculated. It results in a vector with as many values as there are feature maps. This

vector is assumed to contain the confidence for each class and by a softmax layer the

probability for each class is received. In comparison to a dense layer, the GAP layer

builds a closer connection between feature maps and output neurons. [25]

In the CAM approach the weights of the GAP layer are used to create the activation

heat maps. The vector of the GAP layer is multiplied with its corresponding feature

map. Because each entry of the GAP vector is a probabiity for a class, the values of

feature maps are reinforced based on their impact on the output class. This leads to an

estimation of areas that are important for the classification. [24]

The necessity of a GAP layer limits the application possibilities for the CAM algorithm.

A larger variety of use cases is covered by the Grad-CAM approach. Within the Grad-

CAM, class activation maps are produced, as well, but they do not rely on the GAP

layer. Instead, the multiplication factors for the feature maps are calculated differently:

Gradients between a change of the feature map's activation and the output value of

each class is calculated. The gradients for each feature map are averaged to one value

that is subsequently applied onto the feature map. To include only positive values, a

ReLU function [26] is applied on the resulting map for each class. The feature maps for

one class are concatenated and by the coloration of low and high activated areas the

activation heatmaps are created.

6

Explanatory Approaches of Convolutional Neural Networks

Figure 2.5 shows an input image and the corresponding activation heat maps for the

classes 'boxer' and 'tiger cat'. The activation heat maps contain a blue to red varying heat

map area. According to [13], the blue area represents 'the evidence of the class' and the

red area represents a 'high score' of the considered class.

Figure 2.5: Images presented in [13] as input image (left) for the Grad-CAM algorithm,
the result for the class 'boxer' (middle) and the result for the class 'tiger cat'.
[13]

As the other algorithms described above, the Grad-CAM approach proved a reasonable

but coarse orientation for the decision of the CNN. Again, the usage of different criteria

of a CNN in comparison to a human become apparent: The most decisive criteria for

the decision to class 'tiger cat' are the legs and the hip of the cat because these areas are

colored red in figure 2.5. Instead, the head has a similar impact on the decision as the

environment that is colored in light blue.

Despite the viable results of the Grad-CAM algorithm, it shows again the deviaton be-

tween features used by humans and those used for the CNN's.

7

Explanatory Approaches of Convolutional Neural Networks

8

Theory of Capsule Networks

3 THEORY OF CAPSULE NETWORKS

Capsule networks are special artificial neural networks that are a further development

of 'common' CNN. The core of the capsule network's architecture is a structure called

'capsules'. Capsules are a mathematical model proposed in [16] which arranges one set

of neurons into multiple subsets (figure 3.1).

The special property that distinguishes capsules from 'common' CNN is an algorithm

described as 'dynamic routing'. Thereby, capsules learn to provide their predictions only

to those subsequent capsules, that need the preceding prediction for their prediction.

As a consequence, a specialized information transfer is performed within the capsule

layer: While in 'common' CNN, information is transferred in scalars, in capsule networks

these scalars are concatenated into vectors. The dimension of the vector is equal to the

number of neurons contained in a capsules. The capsules visualized in figure 3.1 require

a two-dimensional input vector and produce a two-dimensional output vector.

Four single
neurons

Four neurons
in two capsules

Figure 3.1: Comparison between a model of four single neurons and four neurons ar-
ranged in two capsules

The architecture of a simple capsule layer is similar to the architecture of a dense layer:

A dense layer consists of an one-dimensional set of input neurons and a subsequent one-

dimensional set of output neurons. In contrast to dense layers, capsule layers contain

two different connections, the connection by weights in a same way as in a dense layer,

and the connection by coupling coefficients. A basic example of a capsule layer is visu-

alized in figure 3.2. It is constructed by two sets of neurons that are arranged into two

capsule sets with each capsule containing two neurons. The preceding set of capsules is

denoted as 'low-level capsules', because they store low-level features from the preceding

layer. The capsules of the subsequent neuron set are denoted as 'high-level capsules'. In

9

Theory of Capsule Networks

c11

c12

c21

c22

W

Input capsule set Output capsule set

Two low-level
capsules

Two high-level
capsules

Figure 3.2: Weights and coupling coefficients between two low-level capsules and two
high-level capsules

[16], the high-level capsules are used to predict the classes, so that each high-level cap-

sule stores the high-level features of its assigned class.

In the subsequent explanation numerous parameters will be introduced that either relate

to the low-level capsules, to the high-level capsules or to both capsules. The letter i is

used for low-level capsules and to describe the affiliation of a parameter to the low-level

capsules. The letter j is used for high-level capsules and for the affiliation of a parameter

to the high-level capsules.

A weight matrix Wij is created between all neurons of each low-level capsule to all neu-

rons of each high-level capsule. Different to a 'common' dense connection, each low-level

capsule is additionally connected to each high-level capsule by a connection called cou-

pling coefficient cij.

While the weight matrix is trained by the application of backpropagation, the coupling

coefficients cij are adjusted in an iterative process called 'dynamic routing'. The idea be-

hind this algorithm is to limit the information transfer of the low-level capsules only to

those high-level capsules that use the information for a prediction. This approach was

developed as alternative for a maxpooling layer to increase human-understandable vi-

sion inside a convolutional neural network. [27] The detailed explanation of the dynamic

routing algorithm is presented in section 3.1 based on a minimal example. In section 3.2,

the modifications to receive the full capsule network and the resulting parameters are

described in section 3.3.

10

Theory of Capsule Networks

3.1 EXEMPLARY ARCHITECTURE OF A CAPSULE NETWORK

The architecture of a capsule network depends on the classification task. For an exem-

plary architecture, a basic example classification task is introduced: The capsule network

should be created that distinguishes between both images shown in (figure 3.3).

Image 1 Image 2

Figure 3.3: Two images to be distinguished by a capsule network: Both images consist of
two pixels, while one of them is dark and the other one is light.

Both images consist of [1 × 2] pixels of which the first one is colored light grey and the

other pixel is colored dark grey. The difference between both images is the position of

the light and the dark pixel. Therefore, the capsule network's output is two-dimensional,

either 'image 1' or 'image 2'. Images of two pixels are chosen for this example, because

in comparison to one-pixel images, the low-level capsules and high-level capsules are

directly assignable to the dark or the light pixel in this example of 2 pixels.

One architecture applicable to this example task is presented in figure 3.4. Each low-

level capsule contains two neurons and each high-level capsule contains three neurons.

The reason to use an output capsule with three neurons is to better track the transition

between vectors belonging to the low-level capsules and vectors belonging to the high-

level capsules. Despite this is a minimal capsule network it contains all three elements

that are necessary for the architecture of each capsule network:

i At least one convolutional layer with two convolutional filters

ii At least two low-level capsules with each containing two neurons

iii At least one high-level capsule with (at least) two neurons for each output class

The first step for the creation of a capsule layer is the formation of low-level capsules.

To create the low-level capsules, based on [16], at least one convolutional layer is nec-

essary. The reason is visualized in figure 3.4 on the following page: By the application

of two [1 × 1] convolutional filters with a step size of 1 pixel and the general absence of

zero-padding on the input image, an array with the dimension [1× 2× 2] is created. This

array is described by the term 'Feature Maps'. The low-level capsules are created by con-

catenating the values along the depth (last axis) of the feature map array. Without any

11

Theory of Capsule Networks

c11

c12

c21

c22

Wij

Two Low-
Level Capsules

Two High-
Level Capsules

Conv.
Filter

Feature
Maps

Input
Image

Image
1

Image
2

Figure 3.4: A capsule network consisting of two low-level capsules made from two con-
volutional filters and two output capsules to classify the 2-pixel images of
figure 3.3.

further modification, these values are directly transferred into the low-level capsules. An

example calculation for the creation of low-level capsules is shown in figure 3.5 which is

oriented on figure 3.4. The input image has a light value (0.8) and a dark value (0.2). They

are set in this example to generate short, comprehensible values for the feature maps.

[0.8 0.2] ∗

[

[0.5]
[1.0]

] [

[0.4 0.1]
[0.8 0.2]

]

[

[0.4]
[0.8]

]

[

[0.1]
[0.2]

]

Input
Image

Conv.
Filter

Feature
Maps

Low-Level
Capsules

Figure 3.5: Example calculation of two low-level capsules from a two-dimensional in-
put image and two one-dimensional convolutional filters. Calculation corre-
sponds to figure 3.4.

As shown in figure 3.4 and figure 3.5, the creation of low-level capsules is always based

on the concatenation of multiple values at the same position along the feature maps.

Through this grouping of values from multiple feature maps, features predicted through

different convolutional filters are concatenated into one low-level capsule. The low-level

capsules store the concatenated values inside a vector whose dimension is equal to the

number of neurons in the low-level capsule.

12

Theory of Capsule Networks

In this simple capsule network, the number of convolutional filters leads directly to the

number of neurons per low-level capsule: Both of the convolutional filters generate one

value for the vector of the low-level capsule. If the network has considerably more con-

volutional layers, then not the entire output is stored into one corresponding output cap-

sule. Instead, groups of low-level capsules are formed. This grouping is not necessary in

this example and it is discussed in section 3.3 on page 23.

Before the information of the low-level capsules is transferred to the high-level capsules,

it is modified by the weight matrix and by the coupling coefficient. This is performed

by the dynamic routing which is explained in detail in the subsequent section 3.2. The

information in high-level capsules contains the features for the assigned class stored in

a vector. As in low-level capsules, the dimension of the vector of a high-level capsule

equals the number of neurons of this vector. In this minimal example, the features are

stored in a two-dimensional vector. The larger the length of a high-level capsule's vector,

the clearer the features are recognized. [16] Therefore, the length of the vector is applied

as measurement of the 'certainty' for a class.

3.2 THE DYNAMIC ROUTING ALGORITHM

The 'dynamic routing algorithm' is a process that creates specialized connections between

low-level capsules and high-level capsules: During the training of the model, for each

high-level capsules the low-level capsules are identified, whose predictions are neces-

sary for the prediction of the high-level capsules. To achieve this, the coupling coeffi-

cients between low-level capsules and high-level capsules are amplified or mitigated in

the training process by a mechanism called 'routing-by-agreement'. Thereby, the orienta-

tion of the vector of a low-level capsule is compared to the orientation of the vector of a

high-level capsule. If both vectors are oriented similarly or equally, the information of the

low-level capsule is assumed to be important for the prediction of the high-level capsule

and thus, the connection between both capsules is strengthened.

This learning mechanism inside the capsule layer is based on two parameters: The first

parameter is a 'common' weights connection between the neurons. The values of the

weight matrix are adjusted through backpropagation. The second parameter is the cou-

pling coefficient that is adjusted through routing-by-agreement. Because the routing-

by-agreement mechanism relies on the values of the weight matrix, one training step

13

Theory of Capsule Networks

cij

[

·
]

[1 × 1]

[

·
·

]

[2 × 1]

ui

1

2





·
·
·





[3 × 1]

ûj|i

∑i

3





·
·
·





[3 × 1]

sj

4





·
·
·





[3 × 1]

vj

[

·
]

[1 × 1]

b̂ij

5

6
[

·
]

[1 × 1]

bij

Low-Level
Capsule

High-Level
Capsule

Wij

[3 × 2]

7

Figure 3.6: Schematic visualization of all tensors involved in a capsule network between
a low-level capsule containing two neurons and a high-level capsule contain-
ing three neurons.

contains the update of the weight matrix and subsequently, the update of the coupling

coefficients.

In figure 3.6, a schematic representation of the dynamic routing algorithm within a cap-

sule layer is displayed. Only a single low-level capsule and a single high-level capsule

are shown to increase the clarity of the explanation.

The vectors are represented by braces which visualize the dimension of the vector. Ad-

ditionally, the dimension is written below the vector, as well as its symbol in dashed

rectangles. The symbols are based on the notation used in [16], except for ûj|k and b̂ij,

which are not explicitly named in [16]. The numbers 1 − 7 display the seven steps of the

dynamic routing algorithm. The dynamic-routing approach is explained subsequently

based on this steps. In each step, the applied vectors and their meaning for the algorithm

are introduced and the corresponding equations are explained.

In step 1, the output of the preceding convolutional layer is assigned to the low-level

14

Theory of Capsule Networks

capsules, as shown in figure 3.4 on page 12. The values are not further modified by the

low-level capsule. The resulting vector in the dimension of the low-level capsule is called

'output vector' ui. One output vector exists for each low-level capsule.

In step 2, the prediction of the low-level capsule is calculated based on the output vector

ui and on the weight matrix Wij like in a dense layer (equation 3.1).

ûj|i = Wij ui (3.1)

By the matrix multiplication of the output vector ui with the weight matrix Wij, the val-

ues of ui are modified and its dimension is adjusted according to the dimension required

for the high-level capsule. The resulting vector is called 'prediction vector' ûj|i because

it holds the prediction of the low-level capsule i for the high-level capsule j. In a dense

layer, the prediction vector ûj|i would be used as input to the high-level capsule j. How-

ever, in a capsule layer, there is one prediction vector for each connection of a low-level

capsule to a high-level capsule. To insert the prediction vectors simultaneously into a

high-level capsule, they are initially summarized to one vector. Because each high-level

capsule has one assigned class to predict, the output vectors ui of the low-level capsules

vary in their importance for different high-level capsules. This importance is described

mathematically in step 3 by the coupling coefficients that weight the prediction vectors

before the summation to the weighted sum sj (equation 3.2).

sj = ∑
i=1

cij ûj|i (3.2)

The value of a coupling coefficient is in the interval of 0 and 1, to weight the low-level cap-

sule's prediction vector ûj|i. At the beginning of the training, all coupling coefficients are

initialized with equal positive values. In each iteration of the dynamic-routing process,

they are adjusted based on the orientation between the vector of the low-level capsule

and the vector of the high-level capsule. The update formula of the coupling coefficients

is presented in step 7 of the dynamic-routing process.

In the minimal capsule layer of figure 3.6 only a single low-level capsule exists. In a real

capsule layer, multiple low-level capsules are connected to one high-level capsule and

for each connection a prediction vector ûj|i exists. The existence of these additional pre-

diction vectors is indicated by the sum symbol. Despite that the coupling coefficients

15

Theory of Capsule Networks

seem similar to the weights, they are not updated through backpropagation but during

the dynamic routing algorithm.

The actual vector input for the high-level capsule j is the weighted sum sj. The values

of the weighted sum are impacted either by the presence of features or by a strong con-

nection between the low-level capsule and the high-level capsule. This impact becomes

apparent by the concatenation of equation 3.1 (page 15) and equation 3.2 (page 15) to

equation 3.3:

sj = ∑
i=1

cij Wij ui (3.3)

The features concatenated in a low-level capsule are stored in ui. If the low-level capsule

contained important information for the high-level capsule in the preceding iterations,

then cij and Wij are large resulting in a large weighted sum. On this equation the con-

nection between the dynamic routing algorithm and backpropagation is illustrated: The

highest value for the weighted sum is reached only then, if the values of the weight ma-

trix Wij and the values of the coupling coefficient cij are high.

In step 4, the prediction of the high-level capsule is calculated directly from the weighted

sum sj to a vector vj, which has the same dimension as the high-level capsule (equa-

tion 3.4).

vj =
||sj||

2

(1 + ||sj||2)

sj

||sj||
(3.4)

Within equation 3.4, the term ||sj|| is the euclidean norm of sj, alternatively written as

||sj||2, and is calculated by equation 3.5. [28]

||sj|| =
(

∑
p=1

s
2
j,p

)
1
2

(3.5)

The index p represents the entries of the vector sj. If the entries of sj strongly deviate

from zero, the low-level capsules transferred information for the prediction to the high-

level capsule in the preceding iterations. In this case, the euclidean norm of sj is large.

If there was no or few information for the high-level capsule in the preceding iterations,

the values in sj are close to zero and thus, the euclidean norm of sj is small.

The length of sj directly influences the result of equation 3.4. If the length of sj is sig-

nificantly smaller than 1, the first factor of equation 3.4 approaches zero. Through the

multiplication of the second term with a value close to 0, the length of the resulting pre-

16

Theory of Capsule Networks

dicted vector vj is equally close to 0. However, if the length of sj is significantly larger

than 1, then the first factor of equation 3.4 approaches 1. Then, the result is dominated by

the second factor, that normalizes the sj to a length close to 1.

Consequently, vj is close to 1 if the features of the class are found in the low-level cap-

sules. If no or only few features are found, the length of vj is close to 0. This length

conversion is denoted in [16] as 'squashing' and the vector vj of equation 3.4 is called

'squash vector'.

Because the presence of features of a class determines the length of vj that ranges between

0 and 1, this length is applied as a measurement of the certainty for the assigned class of

a high-level capsule.

The squash vector is not only required to create the prediction, it is additionally used

for the routing-by-agreement: Because in vj the predictions of all low-level capsules are

summarized into one vector, the individual impact of the single low-level capsules is not

verifiable anymore on this point. To examine the impact of each low-level capsule in step

5, the squash vector vj is compared with each prediction vector ûj|i. The orientation of

the squash vector vj of each high-level capsule is compared with the orientation of all its

prediction vectors ûj|i by calculating the dot product between both vectors (equation 3.6).

b̂ij = vj · ûj|i (3.6)

The result b̂ij of the dot product is a scalar that is larger, the closer the orientations of both

vectors are to each other. If the vectors ûj|i and vj are oriented similar, then b̂ij is large and

the prediction of the low-level capsule was decisive for the prediction of the high-level

capsule. The similar orientation of the prediction vector ûj|i and the squash vector vj is

called 'agreement' because the prediction of the low-level capsule supports the predic-

tion of the high-level capsule. The larger the difference in both vector's orientations, the

less both vectors agree and the smaller is the impact of the prediction of the low-level

capsule onto the prediction of the high-level capsule. The result b̂ij is not only influenced

by the orientation of both vectors but additionally by their length. A visualization for

the comparison of the orientations and an explanation about their meaning is provided

in figure 3.7 by the example of two-dimensional vectors.

The first row of figure 3.7 displays the possible cases if the squash vector vj and the pre-

17

Theory of Capsule Networks

(a) (b) (c) (d)

(e) (f) (g) (h)

ûj|i
vj

ûj|i

vj

ûj|i
vj

ûj|i

vj

ûj|i

vj
ûj|ivj

ûj|i

vj ûj|i vj

Figure 3.7: Comparison between a long and short squash vector vj with a long prediction
vector ûj|i.

diction vector ûj|i are long. In (a), both of them are oriented in the same direction which

means, they agree completely. This means that the prediction of the low-level capsule

is important for the prediction of the high-level capsule. In this situation, b̂ij is large in

comparison to all subsequent cases.

The second and third possibility (b) and (c) are different orientations of the prediction

vector ûj|i and the squash vector vj. In (b), the case of slightly different oriented vectors

is shown. This case leads to a smaller value of b̂ij compared to case (a). Accordingly, the

impact of the prediction of the low-level capsule to the prediction of the high-level cap-

sule is smaller than in case (a), but still significant. In case (c), both vectors are orthogonal

to each other. Related to equation 3.6, the resulting b̂ij is 0. In this case, the prediction of

the previous low-level capsule has no impact on the prediction of the high-level capsule.

This high-level capsule used the features of one or multiple other low-level capsules for

its prediction. In this case, the prediction of the low-level capsule was scaled down either

by the weight matrix or by the coupling coefficient (compare equation 3.3). In case (d),

the prediction of ûj|i is similarly unrelated to the prediction of vj, but a negative routing

logit is derived as result to weaken the connection between the capsules.

The remaining cases (e-g) show the situation with a large prediction vector ûj|i and a

small squash vector vj. In case (e), the prediction of the low-level capsule is necessary for

the prediction of the high-level capsule, but it was scaled down by the coupling coeffi-

cient. This is possible during the training, if the coupling coefficients are not yet adjusted

18

Theory of Capsule Networks

correctly and thus decrease the value of important prediction vectors (compare equa-

tion 3.2). Case (e), (f) and (g) display a large prediction vector ûj|i but with small or no

impact on capsule j. In this case, the prediction vector was not relevant to the prediction

of high-level capsule.

The parameter that results from the comparison of the orientations is the update routing

logit b̂ij. In step 6 it is applied to update the connection strength between the correspond-

ing low-level capsule and the high-level capsule for the next routing iteration. Despite

that each connection between a low-level capsule and a high-level capsule is described by

the coupling coefficients, the routing logits are the direct precursors of the coupling co-

efficients. At the beginning of the training, each routing logit is initialized to zero. With

each routing iteration, the current routing logit b̃ij is updated with the update routing

logit b̂ij (equation 3.7).

bij = b̃ij + b̂ij (3.7)

This equation demonstrates, that all routing logits are modified in each routing iteration.

The magnitude of the update depends on the agreement of the low-level capsule and

the high-level capsule in step 6: The update of the routing logit is large if both capsules

agreed. Otherwise, the routing logits are updated to a smaller degree.

In step 7, the coupling coefficients cij are calculated for the next routing iteration by the

softmax-like equation 3.8 based on the new routing logits.

cij =
exp(bij)

∑k exp(bik)
(3.8)

In this equation, the index k represents the indices of all output capsules, while j rep-

resents the considered output capsule. The considered coupling coefficient cij does not

only result from the importance of the low-level capsule i for the considered high-level

capsule j but also from the low-level capsule's importance to all other high-level capsules

k. The sum of all coupling coefficients of a low-level capsule is always 1.

At the beginning of the training, all routing logits were initialized to zero, so that the size

of the coupling coefficient depends on the number of capsules.

During the training progress, a large coupling coefficient close to 1 is generated if one

specific high-level capsule needs the result of the low-level capsule significantly more

than all other high-level capsules. In this case, the other coupling coefficients converge to

19

Theory of Capsule Networks

0. If multiple high-level capsules have a comparable high necessity for the prediction of

the low-level capsule, the value of the coupling coefficients for each of these connections

converges to 1/q, with q being the number of high-level capsules that need the predic-

tion. A similar phenomenon occurs if all connections are equally unimportant. In this

case, all routing logits would get updated by the same small degree and result in equal

coupling coefficients.

The core of the described dynamic routing algorithm is the squash vector vj. To encour-

age the capsule network to create long squash vectors for a present class and short squash

vectors of a non-present class, a special loss function is applied (equation 3.9). This loss

function is calculated individually for each high-level capsule j and covers both cases of

a short and of a long squash vector.

Lj = Tj max(0, m+ − ||vj||)
2 + λ (1 − Tj) max(0, ||vj|| − m−)2 (3.9)

The parameter Tj is different depending on the class present in the input image: If the

class assigned to the high-level capsule j is present in the image, Tj is 1 and the first ad-

dend of the equation counts for the loss calculation. Equivalently, Tj is set to 0, if the class

of the capsule is not present in the image. Thereby, the second addend of equation 3.9

counts for the loss calculation. By the parameters m+ and m− the targeted length of vj is

set. In [16], the parameters are set to m+ = 0.9 and m− = 0.1. As a result, the loss for the

present class drops to zero, if the correct squash vector vj has a length larger than m+.

For a non-present class, the loss drops to 0, if the squash vector has a length shorter than

m−. Through m+ and m− a margin is created for the length of the squash vectors. Hence,

in equation 3.9, this loss function is called 'margin-loss'.

To strengthen the impact of a correct prediction, the parameter λ is applied as down-

scaling factor for the loss of capsules, whose class is not present in the image. Thereby,

the importance of a long squash vector vj for the correct class is increased in comparison

to a short squash vector vj for an incorrect class. Equation 3.9 is basically a modified

ReLU function [26] , because all values under or over a specific value, respectively, result

in the value of 0.

This loss function (equation 3.9) has a peculiarity: Based on the structure of the network,

exactly one squash vector for each class exists. This results in exactly one prediction per

class. Even if two instances of one class are present in an image, the capsule network

20

Theory of Capsule Networks

Table 3.1: Vectors for one high-level capsule in the example capsule network of figure 3.4

Step Eq. Input Result

1 - [0.40], [0.80] u1 =
[

0.40
0.80

]

[0.10], [0.20] u2 =
[

0.10
0.20

]

2 3.1 u1 =
[

0.40
0.80

]

W11 =

[

1.0 1.0
1.0 1.0
1.0 1.0

]

û1|1 =

[

1.20
1.20
1.20

]

u2 =
[

0.10
0.20

]

W21 =

[

1.0 1.0
1.0 1.0
1.0 1.0

]

û1|2 =

[

0.30
0.30
0.30

]

3 3.2 û1|1 =

[

1.20
1.20
1.20

]

û1|2 =

[

0.30
0.30
0.30

]

c11 = 0.5 c21 = 0.5 s1 =

[

0.75
0.75
0.75

]

4 3.4 s1 =

[

0.75
0.75
0.75

]

v1 =

[

0.36
0.36
0.36

]

5 3.6 û1|1 =

[

1.20
1.20
1.20

]

v1 =

[

0.36
0.36
0.36

]

b̂11 = 1.30

û1|2 =

[

0.30
0.30
0.30

]

v1 =

[

0.36
0.36
0.36

]

b̂12 = 0.32

6 3.7 b̂11 = 1.30 b̃11 = 0 b11 = 1.30

b̂12 = 0.32 b̃12 = 0 b12 = 0.32

7 3.8 b11 = 1.30 b12 = 0.32 c11 = 0.73

b11 = 1.30 b12 = 0.32 c12 = 0.27

will only predict the existence of the class, but not the number of instances. Although

different low-level capsule could detect different instances because they are in in differ-

ent areas, all their information would be transferred to the same high-level capsule. This

high-level capsule only has the possibility to recognize the transferred features, but it

cannot distinguish if they originated from two different instances.

The calculation of the loss of the complete capsule network is performed by summation

of the losses Lj (equation 3.10).

L = ∑
j

Lj (3.10)

Through the loss function for each class, a relation between the length of the squash vec-

tor vj and the weight matrix Wij is created. By minimizing the loss through backprop-

agation, only the weight matrix Wij, but not the coupling coefficients cij are modified.

However, by the usage of vj in the loss function, an indirect relation between the cou-

pling coefficients and the weights is created.

21

Theory of Capsule Networks

To illustrate this relation, the vectors of the dynamic routing between two low-level cap-

sules and the upper high-level capsule of figure 3.4 are calculated. The calculation is

based on the example visualized in figure 3.2 on page 10 and the results are shown in

table 3.1 sorted for the steps previously described. The calculation covers the first itera-

tion of the dynamic routing approach. Therefore, the 'preceding' routing logits have the

value 0, as noted in step 6. In the first iteration, their value is a direct consequence of the

number of high-level capsulesİn this example both coupling coefficients have a value of

0.5.

In the first step, the input to the low-level capsules are the values of the feature maps,

whose calculation is illustrated previously in figure 3.4. For the second step, the values of

weight matrix for the calculation of the prediction vector ûj|i are exemplary set to 1. The

result of this exemplary calculation are the coupling coefficients. The coupling coefficient

c11 from the first low-level capsule to the first high-level capsule is 0.73 and the coupling

coefficient c12 of the second low-level capsule to the first low-level capsule is 0.27. These

values demonstrate that the coupling is oriented towards the larger prediction vector.

The weight matrix Wij is a part of the calculation for the prediction vector. For the dis-

cussed example, both weights matrices were set equally. However, in normal cases, the

values of the weight matrices contain different values. To demonstrate the effect of two

different matrices, the example of table 3.1 is modified by different values in the weight

matrix. The results are illustrated in table 3.2. Therein, the weight matrix for upper high-

level capsule for image 1 has different values.

In table 3.2, the consequence of a larger weight matrix is demonstrated: In this scenario,

the coupling coefficient c11 is significantly larger in comparison to the coupling coefficient

in table 3.1.

This shows, that the weight matrix and the coupling coefficient are related: The weights

impact the squash vector through the prediction vector and the weighted sum (equa-

tion 3.3). If the values of the weight matrix are increased by backpropagation, the

weighted sum and the squash vector become larger in comparison to the previous it-

eration. A larger squash vector leads to a larger routing update and consecutively, to a

larger coupling coefficient for the subsequent routing iteration (equation 3.6). A larger

coupling coefficient and a larger weight matrix increase both the importance of the low-

level capsule to the considered high-level capsule (equation 3.1). [16]

22

Theory of Capsule Networks

Table 3.2: Vectors for one high-level capsule in the minimal example capsule network of
figure 3.4 with different weight matrices

Step Eq. Input Result

1 - [0.40], [0.80] u1 =
[

0.40
0.80

]

[0.10], [0.20] u2 =
[

0.10
0.20

]

2 3.1 u1 =
[

0.40
0.80

]

W11 =

[

2.0 2.0
2.0 2.0
2.0 2.0

]

û1|1 =

[

2.40
2.40
2.40

]

u2 =
[

0.10
0.20

]

W21 =

[

1.0 1.0
1.0 1.0
1.0 1.0

]

û1|2 =

[

0.30
0.30
0.30

]

3 3.2 û1|1 =

[

2.40
2.40
2.40

]

û1|2 =

[

0.30
0.30
0.30

]

c11 = 0.50 c21 = 0.50 s1 =

[

1.35
1.35
1.35

]

4 3.4 s1 =

[

1.35
1.35
1.35

]

v1 =

[

0.48
0.48
0.48

]

5 3.6 û1|1 =

[

2.40
2.40
2.40

]

v1 =

[

0.48
0.48
0.48

]

b̂11 = 3.46

û1|2 =

[

0.30
0.30
0.30

]

v1 =

[

0.48
0.48
0.48

]

b̂12 = 0.43

6 3.7 b̂11 = 3.46 b̃11 = 0 b11 = 3.46

b̂12 = 0.43 b̃12 = 0 b12 = 0.43

7 3.8 b11 = 3.46 b12 = 0.43 c11 = 0.95

b11 = 3.46 b12 = 0.43 c12 = 0.05

3.3 EXTENSION OF THE EXAMPLE FOR LARGE-SCALE CAPSULE NETWORKS

The presented minimal example includes all elements necessary for the construction of

a capsule network. However, when a large number of convolutional layers is applied to

increase the capsule network, the size of the low-level capsules becomes a new adjustable

parameter: Opposite to the example shown in figure 3.4, in a large-scale capsule network,

the size of the low-level capsules is not necessarily derived from the number of feature

maps. Instead, a parameter for the number of neurons per low-level capsule is used. Its

meaning is described by an enlarged minimal example shown in figure 3.8 with a num-

ber of feature maps nm = 4. Based on the previously presented method for the creation

of low-level capsules, the number of neurons in one low-level capsule would be 4. In

this case, 256 convolutional filters would lead to 256 neurons in one low-level capsule.

To avoid large-size low-level capsules, only a specific fixed number of values along the

feature maps are concatenated into one low-level capsules. This results in the creation of

23

Theory of Capsule Networks

li

li

lc

lc

nc

lm

lm

nm

NL

NLG

×4

nL

NH

nH

Input
Image

Conv.
Filter

sc, pc

Feature
Maps

Low-Level
Capsules i

High-Level
Capsules j

Figure 3.8: Exemplary architecture of a capsule network that contains the formation of
capsule groups. The architecture is based on a greyscale input image.

multiple low-level capsules from one position in the feature maps.

In figure 3.8, the number of neurons per low-level capsule is set to 2. All 4 feature maps

are concatenated in 2 groups of 2 neurons which are visualized for one position in the

feature maps by the light and dark colored neurons. Each color represents a different

group. This grouping is performed for each position of the feature map, leading to 4 × 2

low-level capsules. The neurons of one position in one feature map group are concate-

nated into one low-level capsule. As a consequence, multiple low-level capsules along

the axis of the feature map are possible. Furthermore, this means that the low-level cap-

sules can specialize on features of different classes that are located at the same position.

The number of neurons per low-level capsule is equal to the number of features storable

in the low-level capsule. Multiple smaller low-level capsules support the detection of

more features because more low-level capsules are available. Few large low-level cap-

sules support the detection of fewer features but the features stored inside a low-level

capsule may vary stronger.

For the construction of the capsule network, the number of neurons per low-level capsule

must fit to the number of feature maps. This connection is expressed by equation 3.11, in

which nL is the number of neurons per low-level capsule and nm is the number of feature

maps. The parameter NLG is the number of capsule groups that are created along the axis

of the feature maps.

nm = nL · NLG (3.11)

24

Theory of Capsule Networks

Table 3.3: Overview for construction-related parameters of a capsule network in relation
to the specific example in figure 3.8. Parameters that are not directly adjusted
but influenced by other parameters are marked with an asterisk.

Parameter Symbol Value in Figure 3.8 / Pixel

Input Image

Image side length li 3

Convolution Filter

Conv. filter side length lc 2
Number of conv. filter nc 4
Stride sc 1
Zero-Padding pc 0

Feature Maps

Feature Map Side Length* lm 2
Number of Feature Maps* nm 4

Low-level capsules

Number of neurons per low-level capsule nL 2
Number of low-level capsule groups* NLG 2
Number of low-level capsules* NL 8

High-level capsules

Number of neurons per high-level capsule nH 2
Number of high-level capsule* NH 2

With the possibility for low-level capsule groups, any large-scale capsule network related

to [16] is constructible. All construction-related parameters are summarized in table 3.3

for the capsule network shown in figure 3.8. In the construction of the capsule network,

the size of the input image li and the settings for the convolutional filters are adjustable

in the general rules for convolutional arithmetic. [29]

The side length and number of the feature maps are not directly adjustable: The side

length lm is dependent of the setting of the preceding convolutional layer. It is calculable

by the size li of the quadratic input image, the size of the quadratic convolutional filter lc,

their stride sc and their padding pc (equation 3.12). [29]

lm =

⌊

li − lc + 2pc

sc

⌋

+ 1 (3.12)

The number of feature maps nm is a direct result of the number of the previously applied

convolutional filters nc (equation 3.13).

nc = nm (3.13)

25

Theory of Capsule Networks

The number of neurons nL per low-level capsule is freely selectable. It leads with the

number of the feature maps nm to the number NLG of low-level capsule groups based on

equation 3.11. The number of low-level capsules results from the side length lm of the

feature maps, the number of feature maps nm and the number NLG of low-level capsule

groups (equation 3.14).

NL = l2
m · NLG (3.14)

Instead of setting the number nL of neurons per low-level capsule, the number NLG of

low-level capsule groups or the number NL of low-level capsules can be selected and the

remaining parameters are calculated based on equation 3.11 and equation 3.14.

The number NH of high-level capsules is equal to the number of classes inside the pro-

vided dataset. The number nH of neurons per high-level capsule is freely selectable. This

number is the dimension of the squash vector vj and it impacts the number of features

storable in one high-level capsule. Equally to the number of neurons in the low-level

capsules, the number of neurons in the high-level capsules impacts the storable features

in the squash vector: With a higher number of neurons, more features may be stored,

because the information of more low-level capsules is representable in the high-level

capsules. At the same time, the training difficulty rises, because more weights per cap-

sule must be optimized. With a lower number of neurons in the high-level capsules the

storable features and the number of training parameters in one high-level capsule are re-

duced.

Another additional factor emerges for the training of large-scale capsule networks: While

the dynamic routing was introduced to take place directly after the update of the weight

matrix, this is not the only option for the frequency that the dynamic routing can be exe-

cuted. Because it impacts size of the coupling coefficients based on a given weight matrix,

the 'common' backpropagtion-based training of the weights must be balanced to the cou-

pling coefficients' adjustment through the dynamic routing algorithm. The weight matrix

gets updated after a batch of images passed the capsule network. After this update, new

coupling coefficients are calculated. However, based on these coupling coefficients the

dynamic routing algorithm inside the capsule layer can be executed another time which

results in different coupling coefficients. Consequently, the number of routings per train-

ing step is an adjustable factor, to be set in large-scale capsule networks. In [16] the

26

Theory of Capsule Networks

28

[28, 28]

Input Image

28

20

20

[20, 20, 256]

256

Feature Maps

Conv. Filter

[256, 9, 9]
sc = 1, pc = 0

6

6

256

[6, 6, 256]

Feature Maps

Conv. Filter

[256, 9, 9]
sc = 2, pc = 0

Low-Level Capsule Formation

Wi,j, ci,j8

×1152

[8, 1152]

Low-Level
Capsules

×10

[16, 10]

16

High-Level
Capsules

Lj

(To Decoder)

10

[10]

Output

Figure 3.9: Architecture of a capsule network proposed in [16] with a greyscale image
input side length of 28 pixels. Because of the usage of this capsule network
for the MNIST dataset, the number of output capsules is 10.

recommended option to train on the MNIST dataset is a routing number of r = 3. The

architecture of the capsule network proposed by [16] is visualized in figure 3.9. Different

from a basic capsule network, the architecture contains two subsequent convolutional

layers at the beginning and additionally, a decoder at the end by which the perceived im-

ages are reconstructed. Because of this decoder, the complete structure of [16] containing

the capsule network and the decoder is subsequently denoted as 'capsule-decoder-net-

work'.

The parameters of the capsule-decoder-network are summarized in table 3.4. The first

two layers are convolutional layers containing 256 convolutional filters with a side length

of l1 = l2 = 9. In the first convolution layer, a stride of sc = 1 is applied and in the second

convolution layer a stride of sc = 2. After both convolutional layers 256 feature maps

with a side length of lm = 6 are created. The number of neurons per low-level capsule

is set to 8 and, therefore, the low-level capsules are arranged into 32 low-level capsule

groups.

The model is created for the training of the MNIST dataset so that the number of high-

level capsules is set to 10. Each of the high-level capsules contains 16 neurons, creating

27

Theory of Capsule Networks

Table 3.4: Parameters of the capsule-decoder-network's architecture proposed in [16]

Parameter name Parameter Symbol Dimension

Input Image

Side length li 28

Convolutional Layer 1

Kernel Number N1 256
Kernel Size k1 9
Stride s1 1
Padding p1 0

Convolutional Layer 2

Kernel Number N2 256
Kernel Size k2 9
Stride s2 2
Padding p2 0

Feature Maps

Feature Map Side Length lm 6
Number of Feature Maps nm 256

Low-level capsules

Number of neurons per low-level capsule nL 8
Number of low-level capsules NL 1152
Number of low-level capsule groups NLG 8

High-level capsules

Number of neurons per high-level capsule nH 16
Number of high-level capsule NH 12

Capsule Network Output Layer

Number of output neurons nON 12

Decoder Network

Number of dense neurons (Layer 1) nD1N 512
Number of dense neurons (Layer 2) nD2N 1024
Number of output neurons nDON 784

a 16-dimensional squash vector vj. The squash vector of the high-level capsules is used

as input for the decoder. Therefore the array with the dimension [10 × 16] is flattened

and used as input for the subsequent dense layer. A detailed visualization of the decoder

is provided in figure 3.10 on the facing page. The decoder consists of three sequential

dense layers with 512, 1024 and 784 neurons, respectively. The first two layers use the

ReLU function [26] as activation and the last layer uses the sigmoid function [30]. The

number of neurons in the last layer is defined by the square of the size li of the input

image. The output of this layer is subsequently reshaped into an two-dimensional image

with the size of [28 × 28]. Because the decoder is attached to the capsule network, the

training of both models is connected. While the capsule network is trained by providing

28

Theory of Capsule Networks

relu relu sigmoid

[10, 16] [160,] [512,] [1024,] [784,] [28, 28]

Squash
Vectors

Flattened
Squash
Vector

Flattened
Output
Image

Output
Image

Figure 3.10: Visualization of the decoder using the squash vectors of the capsule network

the class labels, the decoder part is trained by providing the input images. The capsule

network is trained based on the margin-loss function (equation 3.9). For the complete

capsule-decoder-network, the euclidean norm is calculated between the prediction xpred,i

and the true value xtrue,i of all predicted pixels p (equation 3.15).

LD =

(

p

∑
i=1

(xpred,i − xtrue,i)
2

)

1
2

(3.15)

For the training of the capsule-decoder-network, all squash vectors except for the one

of the present class are set to zero in a process called 'masking'. Therefore, the decoder

learns a general representation of the class at a specific position of the decoder. However,

during testing no masking is executed. The reason for that lays in the learning ability of

the capsule network: A properly trained capsule network leads to small values in those

squash vectors whose class is non present in the image, making a masking unnecessary.

The decoder is not only responsible for reconstructing the images, rather it provides a

'motivation' for the capsule network to learn the class representations inside the capsules.

To ensure the representation learning of the capsules, the loss of the capsule network L

(equation 3.9 on page 20) and the loss of the capsule-decoder-network LD (equation 3.15)

are weighted and added to one total loss Ltotal (equation 3.16).

Ltotal = L + d · LD (3.16)

29

Theory of Capsule Networks

In equation 3.16, d is the weighting factor for the loss of the capsule-decoder-network in

relation to the loss of the capsule network. The weighting factors are additional hyper-

parameters to control the output of the capsule-decoder-network.

30

Development of a Capsule-Decoder-Network in Tensorflow

4 DEVELOPMENT OF A CAPSULE-DECODER-NETWORK IN

TENSORFLOW

To investigate capsule networks for their applicability to image rankings, a capsule net-

work is created in Python using Tensorflow and Keras functions. In this chapter, the

construction of the capsule network and the training process is described.

The capsule-decoder-network is trained on 12 classes of the balanced EMNIST letters

dataset, subsequently referred to as 'reduced EMNIST dataset'. [17] This dataset contains

white handwritten letters and digits on a black background. Examples of the 12 used

classes of the EMNIST dataset are shown in figure 4.1. The classes were chosen to cover a

large variety in the structure of the letters. Though some classes of the balanced EMNIST

dataset contain lower and upper case letters, for the training of the capsule-decoder-net-

work only capital letters are used.

Figure 4.1: Examples of training images of the EMNIST dataset [17]

Generally, for the creation of a model in Tensorflow all calculations must be known in-

cluding the resulting dimensions of the corresponding tensors. In the practical applica-

tion each tensor is composed of more dimensions compared to the theoretical description

of the capsule network. This results from the processing of tensors by Tensorflow. In

section 4.1 on the following page, the dimensions of the tensors involved in the capsule-

decoder-network and in the capsule layer are described and visualized. Capsule layers

are not yet available in Tensorflow or Keras, requiring them to be programmed individu-

ally. The code focusses on the development of the dynamic routing between the low-level

capsules and the high-level capsules. In comparison to a common dense layer, multiple

additional parameters are necessary for the creation and execution of the capsule layer.

In section 4.2 the training of the created model onto the reduced EMNIST dataset and the

training results are described.

31

Development of a Capsule-Decoder-Network in Tensorflow

4.1 IMPLEMENTATION OF THE CAPSULE-DECODER NETWORK IN

TENSORFLOW

A large part of the capsule network and of the decoder are implemented with predefined

Tensorflow functions. However, custom functions are applied in the capsule network for

all capsule-related calculations and in the decoder for the masking of the squash vectors.

The dimensions of the tensors are derived by the architecture of the capsule network in

[16] and are summarized in table 3.4 on page 28. Deviating from [16], in this implementa-

tion 12 low-level capsules are used because the dataset contains 12 classes. Additionally,

the number of neurons in the first and second dense layer of the decoder are set to 2048

and 4096 neurons, respectively. A larger number of neurons is assumed useful for the

decoder as handwritten letters contain more features compared to handwritten digits.

In figure 4.2 on the facing page, an overview of the layers of the capsule-decoder-net-

work is provided including the dimensions for all tensors. The layers are visualized by

grey-colored rectangles and connected by arrows. These arrows demonstrate the process

of tensors inside the capsule-decoder-network. The dimension of the tensors are written

in square brackets next to each arrow to show the output of one layer as input to the

subsequent layer(s). The symbols are equivalent to those introduced in table 3.4 except

for bi which is the symbol for the batch size.

When a model is training or predicting with Keras' '.fit()', '.evaluate()' or '.predict()'

method, the batch size is stored as the first dimension of the tensor. Therefore, the batch

size is be included in the calculation of the capsule-decoder-network model. Because it

is independent from the tensor dimensions, its value is stated as −1.

By figure 4.2 the difference between the theoretical calculation of the tensors and the

actual implementation of the model is apparent: In a model, not only one vector but

rather a multidimensional tensor is processed. Not only the batch size must be included

in each calculation, but also the shapes of the tensors must be adapted to the functions

provided by Tensorflow and Keras.

32

Development of a Capsule-Decoder-Network in Tensorflow

Convolutional Layer 1

Convolutional Layer 2

Reshape to Low-Level Capsules

Capsule Layer

Length Calculation Flatten (and Mask)

Dense Layer

Dense Layer

Dense Layer

[bi, li, li]
[−1, 28, 28]

[bi, l1, l1, c1]
[−1, 20, 20, 256]

[bi, l2, l2, c1]
[−1, 6, 6, 256]

[bi, NL, nL]
[−1, 1152, 8]

[bi, NH, nH]
[−1, 12, 16]

[bi, NH]
[−1, 12]

[bi, NH ·nH]
[−1, 192]

[bi, nD1N]
[−1, 2048]

[bi, nD2N]
[−1, 4096]

[bi, nD3N]
[−1, 784]

Input

Decoded Image

Class Prediction

Figure 4.2: Calculation of tensors and their corresponding dimensions: General dimen-
sion for the upper square brackets, specific dimensions for the introduced case
at the lower square brackets.

Figure 4.3: (subsequent page) Calculation of tensors and their corresponding dimen-
sions. General and specific tensor information inside the brackets equivalent
to figure 4.2. Solid connections indicate the execution before dashed connec-
tions.

33

Development of a Capsule-Decoder-Network in Tensorflow

Reshape for TileInitialize Weights

Tile

Matrix Multiplication

Reduce and Transform

New Routing Logits

Reshape

Reduce Mean

Update Routing Logits

Save* Routing Logits

Calculate Coupling Coefficients

Reshape

Weighted Prediction Vectors

Sum

Squash Vectors

[bi, NL, nL]
[−1, 1152, 8]

[bi, 1, NL, nL, 1]
[−1, 1, 1152, 8, 1]

[1, NH, NL, nH, nL]
[1, 12, 1152, 16, 8]

[bi, NH, NL, nH, 1]
[−1, 12, 1152, 16, 1]

[bi, NH, NL, nH, 1]
[−1, 12, 1152, 16, 1]

[bi, NL, NH, nH]
[−1, 1152, 12, 16]

[bi, 1, NH, nH]
[−1, 1, 12, 16]

[bi, NL, NH, nH]
[−1, 1152, 12, 16]

[1, NL, NH]
[1, 1152, 12]

[1, NL, NH]
[1, 1152, 12]

[1, NL, NH]
[1, 1152, 12]

[1, NL, NH]
[1, 1152, 12]

[bi, NH, NL, 1, 1]
[−1, 12, 1152, 1, 1]

[bi, NH, NL, nH, 1]
[−1, 12, 1152, 16, 1]

[bi, NH, nH]
[−1, 12, 16]

[bi, NH, nH]
[−1, 12, 16]

* Initialization of routing
logits in the first iteration

Weights Matrix Wij

Capsule Output ui

Prediction Vector ûj|i

Routing Logits bij

Coupling Coefficients cij

Weighted Sum sj

Squash Vectors vj

Convolutional Output

Squash Vector Output

34

Development of a Capsule-Decoder-Network in Tensorflow

The input of the capsule-decoder-network is a three-dimensional input tensor that con-

tains one batch of greyscale images. The outputs of the capsule-decoder-network are the

lengths of the squash vectors in form of a 12-dimensional vector and the flattened de-

coded image. The input and output are illustrated in figure 4.2 as grey circles.

The implementation of the model is done by the model class of Keras. The layers of fig-

ure 4.2 are defined in the model's constructor and the transfer of the tensors from one

layer to the next is defined in the model's .call() method. Herein, for each layer, the in-

coming and outgoing tensor is set, equivalent to Keras's functional API. [31]

The convolutional layers are defined by the parameters noted in figure 4.2. A bias is

used in both layers. The first convolutional layer is activated by the ReLU function [26]

while for the second layer the leaky-ReLU [32] function is used for activation. Without

the leaky-ReLU activation function, large scopes of zeros were produced frequently, that

led to a vector with a length of 0, that subsequently led through calculation errors by

attempting the division by 0.

The model class provides the possibility for the definition and usage of custom functions

as layers within the .call() method. These so-called 'Lambda' layers are recommended to

wrap simple operations in a Keras layer. [33] Thus, they are used for the implementation

of the layer 'Reshape to Low-Level Capsules' and the 'Length Calculation'. [31]

The layer 'Reshape to Low-Level Capsules' contains the modification of the incoming

tensor's dimension with the .reshape() function provided by Tensorflow. [34] The output

tensor of the second convolutional layer is converted into 1152 low-level capsules with

each containing 8 neurons (figure 4.4).

[−1, 6, 6, 256] ↔ [−1, 6 · 6 · 32, 8] ↔ [−1, 1152, 8]

Figure 4.4: Illustration of the tf.reshape() function.

The layer 'Length Calculation' contains the application of the euclidean norm to the ten-

sor to concatenate its 16-dimensional entries to one value per class.

The layer 'Flatten (and Mask)' uses all squash vectors a dimension of [−1, 12, 16], which is

subsequently called 'squash array'. If the capsule-decoder-network is training, all values

except for those of the squash array are masked by setting their values to zero. To make

this possible, the labels are passed on directly to the masking operations. The squash

array is multiplied with the one-hot encoded labels, following that solely the values of

the correct class remain. It is important to note, that the vectors are multiplied to keep

35

Development of a Capsule-Decoder-Network in Tensorflow

the gradients of the network. It is impossible, for example, to copy the correct squash

array into another tensor containing only zeros. In this case, Keras will not be capable

to calculate the gradients and, as a consequence, from the first layer of the network up

to this layer, the weights will remain constant. Independent of training or testing, the

masked or unmasked squash array is flattened eventually in this layer.

The layer 'Capsule Layer' contains the coupling between the low-level capsules and the

high-level capsules. This layer fulfills two purposes: It creates the correct weights con-

nections between the capsules and it implements the dynamic routing algorithm. This

layer requires the initialization and training of weights. A Lambda layer does not con-

tain trainable parameters, and thus a capsule layer cannot be implemented by the usage

of a Lambda layer.

The alternative for a Lambda layer, that supports trainable parameters, is provided by

Tensorflow through subclassing the tf.keras.layers.Layer class. [35] The capsule layer in-

herits from this class and is called inside the model of the capsule-decoder-network. The

operations included in the capsule layer are visualized in figure 4.3 on page 34. Similar

to the previously discussed figure, the operations in figure 4.3 are illustrated by grey-

colored fields. These fields do not represent layers but rather operations between the

tensors that are connected by the arrows. Next to each arrow, the general and specific

dimension of the corresponding tensor is noted. The names of the specific tensors are

written in italic text to the arrows. Those tensors and their dimensions in the implemen-

tation are additionally summarized in table 4.1.

Table 4.1: Overview of the general and specific dimensions of the named tensors inside
the capsule layer visualized in figure 4.3

Parameter Name Parameter General Specific

Symbol Dimension Dimension

Low-Level Capsule Output ui [bi, NH, NL, nL, 1] [-1, 1, 1152, 8, 1]
Weight Matrix Wij [1, NH, NL, nH, nL] [-1, 16, 1152, 12, 8]
Prediction Vector ûj|i [bi, NH, NL, nH, 1] [-1, 1, 1152, 16, 1]
Routing Logits bij [bi, NL, NH] [-1, 1152, 12]
Coupling Coefficients cij [bi, NH, NL] [-1, 12, 1152]
Weighted Sum sj [bi, NH, nH] [-1, 12, 16]
Squash Array vj [bi, NH, nH] [-1, 12, 16]

36

Development of a Capsule-Decoder-Network in Tensorflow

The input of the capsule layer is re-

ceived by the low-level capsules. In

this application, there are in total

1152 low-level capsules with each

of them containing 8 neurons. The

implementation of a capsule layer

is performed in two steps:

First, the weights between the cap-

sules must be set, because they are

necessary for the dynamic routing.

Secondly, for the implementation of

the dynamic routing not only the

tensors of the current iterations are

used, but also values from the pre-

vious iteration.

c1

c2

W1

W2

x1

x2

x3

x4

y1

y2

W

x1

x2

x3

x4

y1

y2

Figure 4.5: Example capsule layer and ex-
ample dense layer

For the implementation of the weights between the low-level capsules and the high-level

capsules the capsule layer is easily misinterpreted as a dense layer. Despite the similarity

to a dense layer, there is an important difference to a capsule layer. The description of

the difference is supported by figure 4.5 that related to equation 4.1 to equation 4.2. In a

dense layer all values arriving in one neuron are summarized to one value (equation 4.1).

y =







y1

y2






=







x1 · w11 + x2 · w12 + x3 · w13 + x4 · w14

x1 · w21 + x2 · w22 + x3 · w23 + x4 · w24






(4.1)

In equation 4.1, y1 and y2 are the scalar values of each output neuron of a [4, 2] dense

layer. The parameter xk are the scalar values of each input neuron k. There is exactly one

connection between an input neuron and an output neuron m, which is described by the

parameter wk,m. There are two characteristics of the dense layer: Firstly, the scalar output

values ym are independent from each other. Secondly, for the calculation of the output

scalar, all values are summed up after the multiplication with the weights wm,k.

In a capsule layer the values are weighted by the coupling coefficients and subsequently

summarized (equation 4.2). Furthermore, the prediction vectors are calculated for each

connection between a low-level capsule and an high-level capsule. Therefore, the values

37

Development of a Capsule-Decoder-Network in Tensorflow

of different low-level capsules must not be concatenated (equation 4.3).

y =







c1 · (x1 · w11 + x2 · w12) c2 · (x3 · w13 + x4 · w14)

c1 · (x1 · w21 + x2 · w22) c2 · (x3 · w23 + x4 · w24)






(4.2)

y =













y11

y21













y11

y22












(4.3)

The modification from equation 4.1 to equation 4.2 is the application of the coupling

coefficients ci for each low-level capsule i. It shows that the single column of equation 4.1

is split into two columns and the term inside each column is weighted differently. In

the application, the weight matrix between the neurons of the low-level capsules and

the high-level capsules would have to be split into two separate vectors (equation 4.3).

Therein, yi,m is the prediction for each low-level capsule i. This cannot be performed

with the standard dense layer of Keras, because this layer uses the calculation of the

output scalars like equation 4.1. Therefore, the specific arrangement of the capsules is

implemented inside the capsule layer. The network is 'decreased' virtually to this point

at which a dense layer is simulated. The smallest unit applicable for a dense layer is a

connection between one low-level capsule with one high-level capsule. To connect each

low-level capsule with each high-level capsule without mixing the results of the matrix

multiplications, the low-level capsules are 'copied' one time for each high-level capsule.

This is done in Tensorflow by the function tf.tile(), that creates a tensor by replicating the

provided tensor for specific amounts along all of its axes. [36]. This method allows the

reproduction of values along one or multiple axes which is not possible by comparable

functions like tf.stack() [37] or tf.expand() [38]. An example of the application of the

tf.tile() function is provided by figure 4.6.

[

[1 1] [2 2]

]

tf.tile [2, 3]
−−−−−→







[1 1 1 1 1 1] [2 2 2 2 2 2]

[1 1 1 1 1 1] [2 2 2 2 2 2]







Figure 4.6: Illustration of the tf.tile() function. [36] The two-dimensional tensor of the left
side is reproduced two times along the first (outer) axis and three times along
the second (inner) axis.

In reference to figure 4.3, the dimensions of the incoming tensor of low-level capsules is

increased ('Reshape for Tile'), so that one set of all low-level capsules is created for all

38

Development of a Capsule-Decoder-Network in Tensorflow

12 high-level capsules. Note, that in figure 4.3, the second dimension of the tensor is 1

before the 'Tile' operation and it is set to NOC = 12 afterwards.

To connect the set of low-level capsules to the high-level capsules the weights are cre-

ated. In subclasses of tf.keras.layers.Layer weights are initialized in the .build() method

of the class. This method is called one time, when an instance of the class is created. [35]

The application of weights onto input values is achieved by a matrix multiplication. In

Keras and Tensorflow, the last two-dimensions of both arrays are considered as input

for the matrix multiplication, if not stated otherwise. [39] The dimensions of two ten-

sors are compatible for a matrix multiplication if the second considered dimension of the

first tensor is equal to the first considered dimension of the second tensor. All remain-

ing dimensions must be either 1 or equal. The calculation for this example is shown in

figure 4.3:

[1, 12, 1152, 16, 8]× [−1, 1, 1152, 8, 1] −→ [−1, 12, 1152, 16, 1]

Figure 4.7: Illustration of the tf.linalg.matmul() function. [39] The symbol '×' illustrates
the operation. The dimensions considered for the matrix multiplication are
underlined twice

The result of the matrix multiplication and the low-level capsules is the prediction vector

ûj|i. It has two application cases that are executed subsequently. In figure 4.3, the op-

erations connected by the solid lines are performed before the operations connected by

the dashed lines. The output produced by the solidly connected lines is the squash array.

The operations connected by the dashed lines are the update operations of the routing

algorithm and by them, new routing logits are calculated.

The first time this cycle is passed, no routing logits exist. They are initialized with zeros

by the step 'Save* Routing Logits'. They are passed through the operation 'Update Rout-

ing Logits' without any modification, because there is no value to update them and then

they are used to calculate the coupling coefficients. Deviating from the network structure

in [16], the routing logits are normalized to values between 0 and 1 in this implementa-

tion. The reason is, that an unlimited rise of routing logits and coupling coefficients was

observed to the point that NAN values were generated. This behaviour was corrected by

normalizing the routing logit values.

The coupling coefficients are multiplied with the prediction vector ('Weighted Prediction

Vectors') and added ('Sum'). In the operation 'Squash Array' the squash function (equa-

39

Development of a Capsule-Decoder-Network in Tensorflow

tion 3.4) is applied. The required euclidean norm of the weighted sum is calculated by

Tensorflow's function tf.norm(). [40]

As soon as a squash array is present, the routing coefficients for the next iteration are cal-

culated. The squash array is reshaped and multiplied with the prediction vector ('New

Routing Logits'). To this point, the routing logits would be different for each output neu-

ron and they would be different for each image inside the batch. To balance the routing

logits, the mean is calculated along the dimension of all output neurons nH and along

the batch size bi ('Reduce Mean'). The result is an array that contains NPC = 1152 routing

logits for each of the NOC = 12 high-level capsules. The routing logits are stored in a

.npy-file and in all subsequent steps they are loaded instead of initialized ('Save Routing

Logits').

To examine the capsule-decoder-network for its applicability for image rankings, and to

verify its functionality, the tensors of the capsule-decoder-network must be available in a

human readable form. This is guaranteed by Tensorflow's 'Eager Mode'. [41] The Eager

Mode is a comparably new mode that is used as the default mode since the update from

Tensorflow 1.x to Tensorflow 2.x. The mode, that was formerly used in Tensorflow 1.x

versions, is the 'Graph Mode'. [42] The main difference according to [41, 42] is the process

in which operations of tensors are executed: In the Graph Mode a 'Tensorflow graph' is

constructed and executed. All calculations are performed inside the graph, so that only

the input and outputs are available for the user. Instead, in the Eager Mode, all operations

are executed by Python. As a consequence, not only the input and output tensor, but all

involved tensors are easily accessible. Therefore, the Eager Mode is the preferred mode

when debugging a network or when the accessibility of the involved tensors is necessary.

In the implementation of this model, all tensors are storable within .csv or .txt files. Addi-

tionally, not only the values of the squash array are stored, but they are also decoded into

storable images with the tf.io.write file() function. [43] This feature is used in chapter 5

for the visualization of squash vectors.

4.2 TRAINING OF THE CAPSULE-DECODER-NETWORK

The model was trained on 16384 of the reduced EMNIST dataset containing handwritten

digits. It was tested with 1024 images. [17] The test images were predicted during the

training process to plot the the loss and the accuracy. However, this test image set was

40

Development of a Capsule-Decoder-Network in Tensorflow

not used to adjust the hyperparamters of the model. The training parameters were set on

basis of [16] and subsequently varied. The best found parameter setting is summarized

in table 4.2. It was found, that more routing iterations per training step led to a faster ad-

justment of the coupling coefficients to the dataset, but at the same time, the model tends

to overfit more. Deviating from [16], the routing iterations are set to 5 and the weight of

the decoder is set to 0.105. The decay of the learning rate is applied to avoid overfitting

in the later epochs. For the decay of the learning rate the Tensorflow scheduler for the

exponential decay was used with an exponential decay and a staircase function. [44]

Table 4.2: Summary of applied parameters to train the capsule-decoder-network

Training Parameter Value

Epochs 50
Batch Size 128
Routing Iterations 5
Learning Rate 10−4

Decay Rate 0.96
Decay Steps 512
Decoder Weight 0.105

The capsule network and the decoder are concatenated into one model, because of the

advantage of directly passing the squash array. As a result, three losses exist for the

model: The first loss is the margin loss that is based on the margin loss function for the

prediction of the label (equation 3.9). This loss is only applied to the capsule network

and it is not impacted by the decoder. In figure 4.8a, the progress of this loss for the test

dataset is plotted.

The second loss is the euclidean norm for the restoration of the image (equation 3.15).

This loss is a result of the complete capsule-decoder-network. Its progress is plotted in

figure 4.8b for the test dataset.

The total test loss Ltotal is calculated by the weighted sum of both test losses (equa-

tion 3.16).

Ltotal = L + d · LD (3.16)

In this equation, L is the loss of the capsule network and LD is the loss of the capsule-

decoder-network. It is weighted by the decoder weight d because it is approximately one

scale larger than the LC. The losses are combined to encourage the high-level capsules to

store features in their squash vectors. The combined test loss is shown in figure 4.8c.

The loss of the capsule network (figure 4.8a) decreases with a slightly higher gradient

41

Development of a Capsule-Decoder-Network in Tensorflow

(a) Test Loss of the capsule network (b) Test Loss of the capsule-decoder-
network

(c) Added Test loss of capsule net-
work and capsule-decoder-net-
work

(d) Test Accuracy of the capsule net-
work

Figure 4.8: Plots of the training of the capsule-decoder-network.

than the loss for the capsule-decoder-network (figure 4.8b) because the optimization of

the decoder relies on the optimization of the preceding parameters of the capsule net-

work.

For the capsule network model the test accuracy reaches a value of 0.97. It is plotted in

figure 4.8d. For the part of the decoder, no accuracy calculation is applicable because it

predicts a pixel intensity and no label.

42

Creation of Image Rankings

5 CREATION OF IMAGE RANKINGS

The previous chapter covered the construction of the capsule-decoder-network and its

training on 12 classes of the EMNIST dataset. This chapter covers the evaluation of this

model for its applicability to the creation of image rankings.

For each of the 12 considered EMNIST classes a test dataset of 256 randomly selected im-

ages is created. Each of those class specific test sets is predicted by the capsule-decoder-

network. During the prediction process the squash vector of each class from each test

image is stored. The class, that is shown in the image, is subsequently referred to as

'present class' while all remaining classes are called 'non-present' classes.

Initially the relation between the squash vectors length and the quality of the image from

the decoder is explored. This image is subsequently referred to as 'decoded image'. The

squash array is inserted in two different modes into the decoder: In the first mode, the

decoded images are generated based on the unmasked squash array. This mode is equal

to the test mode, that was applied for the evaluation of the model's loss. In the second

mode, a masked squash array is transferred to the decoder. In this squash array, only

the squash vector of the present class carries nonzero values. This mode is equal to the

masking applied in the training of the capsule-decoder-network. The relation between

the length of the present's class squash vector and the restoration quality of the decoded

image is examined. Therefore, the length of the squash vector of the present class is ap-

plied to rank a set of test images within each class (section 5.1).

The length of the squash vectors of non-present classes have an additional impact on the

decoded image. To explore their impact, the squash array is masked differently, so that

only one squash vector of a non-present class stays unmasked. All remaining squash

vectors, including the one for the present class, are masked. By inserting this modified

squash array into the decoder, the features are visualized, that the capsule-decoder-net-

work assigned to the non-present class. The resulting images are provided in section 5.2.

For each class specific test image set, an overview of the largest non-present squash vec-

tors is created. It summarizes the number of instances, that one specific non-present class

generated the largest non-present squash vector of an image. The certainty for the non-

present class is evaluated via the length of its squash vector. These overviews demon-

strate the frequency of the largest non-present squash vector and thus, provide an insight

to the perception of the capsule-decoder-network.

43

Creation of Image Rankings

All overviews are summarized in a matrix similar to a confusion matrix. Therein, the

number of instances of the largest non-present squash vector is noted for each class. To

find out more about the vision ability of capsule networks, three frequent combinations

of classes are determined from this matrix. For each combination a set of 8 images is

created, that contains the step-wise morphing from one class to the other. By this image

set, the point, on which the perception of the capsule-decoder-network changes from one

class to the next one, is explored based on the squash vector's length (section 5.3). By the

change of the squash vector's length in relation to the presence of features, the impor-

tance of features to the capsule-decoder-network's perception is investigated.

To provide an impression about the appearance of squash arrays, an example for class

'A' is displayed in figure 5.1. Both images are the visualization of the complete [12 × 16]-

dimensional squash array. The image on the left side visualizes the unmasked squash

array and the image on the right side visualizes a masked squash array. The rows of

unmasked
classes

squash vector values

unmasked
class

masked
classes

squash vector values

Figure 5.1: Visualization of a squash array for the recognition of class 'A'. Left: Unmasked
squash tensor, right: Masked squash tensor except for class 'A'.
The color grey is assigned to the value 0. Lighter colors mean positive values,
darker colors mean negative values.

both squash arrays are assigned to the 12 classes of the reduced EMNIST dataset, while

the first row is assigned to class 'A' and the last row is assigned to class 'Z'. The columns

show the values of the squash vector represented by a specific grey. To cover positive and

negative values, the value 0 is represented by a medium grey and all positive values are

displayed in lighter color and all negative values are displayed darker. The color referred

to 0 is exactly the color of the masked area of the right squash array.

The certainty for a class is calculated by the euclidean norm of the corresponding squash

vector. (equation 3.15) [28]

||vj|| =
(

∑
p=1

v
2
j,p

)
1
2

(3.15)

44

Creation of Image Rankings

In this equation, vj,p are the values of the squash vector vj. Because of squaring each vj,p,

both positive and negative values lead to the increase of the squash vector length. In the

unmasked squash array of figure 5.1, the first row has the most light and dark pixels.

This row assigned class 'A' is the prediction of the capsule-decoder-network based on

the squash vector's length. Without knowing the exact values, the prediction is roughly

assessable through the squash array. In this case, the actual result of the squash vector

length for class 'A' is 0.90.

Additionally, row 2 for class 'B' and row 7 for class 'O' have several slightly lighter and

darker pixels than the remaining rows for the non-present classes. The length of their

squash vectors are 0.26 and 0.25, respectively. Because the loss function targets values

for non-present classes below 0.10, a length higher than this value means a detection of

elements of this class to a certain degree. If this squash array is inserted into the decoder,

all squash vectors impact the resulting decoded image.

From a masked squash array as shown on the right side of figure 5.1, only the features

of the unmasked class remain. Thereby, the part of the image is reconstructed by the

decoder, that contributed to this specific class.

5.1 IMAGE RANKINGS WITH SQUASH VECTORS OF THE PRESENT CLASS

The squash array is used for two different applications in the capsule-decoder-network:

On one hand it is used for the prediction of the correct class. Therefore, the euclidean

norm is calculated, which is used as measurement for the certainty for this class. On the

other hand, the squash array is used as input for the decoder to reconstruct the image.

To evaluate the squash vector as measurement for the certainty for the prediction, for

each test set of 256 images of one class, the distribution of squash vector length's between

0 and 1 is plotted. The plot for class 'A' is shown in figure 5.2. The plots for the remaining

classes are shown from figure A.1 on page 71 to figure A.11 on page 74.

The length of the squash vectors are grouped by their values in 0.05-steps on the hori-

zontal axis. The number of images in this interval is noted on the vertical axis. For all

classes, the majority of squash vectors has a length between 0.70 ≤ ||vA|| ≤ 0.95. This

distribution fits to the achieved accuracy of 0.97 with the test dataset (section 4.2). Be-

cause the class of the largest squash vector leads to the prediction, based on the length

distribution the majority of squash vectors is predicted correctly. It could be argued, that

45

Creation of Image Rankings

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'A'

N
u

m
b

er
o

f
Im

ag
es

Figure 5.2: Distribution of squash vectors from 256 test images containing class 'A'

the length of the non-present squash vectors are unknown in this distribution, so that

possibly another larger squash vector for another class could exist. However, it will be

shown in section 5.2 that in no case two large squash vectors ≥ 0.7 exist.

The length of the squash vectors seems reasonable under the aspect of the application of

the margin loss function (equation 3.9 on page 20). Therein, a loss of 0 is generated if the

squash vector of the present class has a length ≥ 0.9. However, the growth of the squash

vector length is not encouraged above the value of 0.9. This explains why the squash

vector's increase stops shortly above 0.90.

Before using the squash vector as base for the ranking, the relation between its length

and the quality of the decoded image is examined. The image's quality is measured by

the structural similarity (SSIM) between the decoded image I1 and the original image I2

(equation 5.1). [45]

SSIM(I1, I2) =
(2µ1µ2 + c1)(2σ12 + c2)

(µ2
1 + µ2

2 + c1)(σ2
1 + σ2

2 + c2)
(5.1)

The parameter Ii is the average of each considered image Ii, the parameter σ2
i is the vari-

ance of each image Ii and the parameter σ12 is the covariance of I1 and I2. The additional

constants ci are applied to stabilise the division by a weak denominator.

This calculation is performed for the decoded images based on the masked and the un-

masked squash array, respectively. In this section, the term 'masked' always refers to the

masking of the squash vectors of the non-present classes, so that solely the values of the

46

Creation of Image Rankings

present squash vector remain in the squash array.

A correlation between the squash vector length and the SSIM is found for images de-

coded from masked squash arrays: A larger squash vector leads to higher SSIM between

the original image and the prediction. The plot for class 'A' is displayed in figure 5.3.

For the remaining classes, the plots are shown in figure B.1 on page 75 and figure B.2 on

page 76. For images decoded from the unmasked squash array no relation between the

length of the squash vector and the SSIM was found.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vA||

S
S

IM

Figure 5.3: Plot for the lengths of the squash vectors for class 'A' and the resulting SSIM
between the original image and the decoded image

Because there is a correlation for images of masked squash arrays, but no correlation for

images of unmasked squash arrays, the length of the squash vector provides a measure-

ment about the affiliation of a prediction to a specific class. This affiliation measurement

is required for the creation of image rankings.

For all classes, a ranking is created for images restored from squash vectors in an interval

between 0.70 ≤ ||vj|| ≤ 0.99. The ranking for images of class 'A' is illustrated in figure 5.4

on the following page. The length of the squash vector descends from a length of 0.99 to

a length of 0.70 in steps of 0.01.

47

Creation of Image Rankings

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-
||

v
A
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
A
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
A
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

5
.4

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'A
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

48

Creation of Image Rankings

For each step, the original image is provided at the top of a row, the decoded image from

the unmasked squash array, is shown in the middle and the decoded image based on the

masked squash array is shown in the bottom row. The prediction, that is produced from

the masked squash array, is referenced as 'masked' prediction and the prediction based

on the unmasked squash array is accordingly referenced as 'unmasked prediction'.

Equivalent overviews for the remaining classes 'B' to 'Z' are displayed from figure C.1

on page 78 (class 'B') to figure C.11 on page 88 (class 'Z'). In all rankings from class 'A'

to class 'Z' for a squash vector length of ≥ 0.85 the masked and the unmasked decoded

images strongly resemble the original image and each other. This fits to the result of the

calculation of the SSIM above in figure 5.3. However, the masked predictions appear

smoothed in comparison to the originals. If the original images contain additional de-

tails, for instance a particularly short or large line, these details are restored only to a

very low degree in the masked predictions.

The smoothing of the decoded figure is not found in the unmasked predictions. Instead,

the images tend to have more irregularities as bolder or thinner lines and darker or lighter

areas. This phenomenon increases with the descend of the squash vector length. A lower

squash vector seems to be generated if the figure of the original image deviates signifi-

cantly from the figures that generated a squash vector of ≥ 0.90. However, some details

are restored to a larger degree in the decodings of the unmasked squash arrays in com-

parison to their masked counterparts.

These missing details in the images decoded from the masked squash array indicate that

the capsule network tends to learn generalized representation of the class. One reason for

that probably lays in the comparably large [9× 9] convolutional filters that are applied in

two convolutional layers previous to the capsule network. These filters strongly concate-

nate features. Small features are unlikely to persist through two convolutional layers.

The images decoded from the masked squash array contain the features, that contributed

to the prediction of the class. An image that generates a large squash vector has more fea-

tures that contribute to the prediction of a class than a shorter squash vector. However,

it is remarkable, that not all features from the decodings of the masked squash array are

also found in the decoded image of the unmasked squash array. This impact of the squash

vectors of non-present classes is explored and described in the subsequent section 5.2.

49

Creation of Image Rankings

5.2 IMPACT OF NON-PRESENT SQUASH VECTORS ON THE DECODED IMAGE

As shown in the previous section, the length of the squash vector for the present class

correlates with the quality (SSIM) of the decoded image for the present class. Because

there is no correlation between the length of the squash vector and the predictions based

on the unmasked squash array, an impact of the non-present classes on the output image

is assumed.

The evaluation of the squash vectors of the non-present classes can help to understand

the perception of the capsule-decoder-network. Equivalent to the previous section, from

figure 5.5 on page 53 to figure 5.7 on page 54 twelve images for the class 'A' are ordered

based on the length of their correct squash vector. In this example, the squash vectors

range from 0.25 to 0.90. Additionally, for each image the largest squash vectors among

the non-present classes is found and their features were restored by the decoder. Equiv-

alent examples are also produced for class 'C' and class 'K'. They are presented from

figure D.1 on page 100 to figure D.6 on page 103.

In first row of each table, the original image is displayed. In the second row the prediction

based of the unmasked squash array is shown. As stated above, the unmasked squash

array contains the predictions for all classes.

In the third row the prediction for the present class 'A' is illustrated. These images are

produced solely on the squash vector for class 'A' while the lengths of all squash vectors

for the non-present class were set to zero. The predictions of figure 5.5 are properly re-

stored letters. The quality and the intensity of the restoration decline as the squash vector

for the correct class 'A' decreases. Especially the restored letters (A9 to A12) of figure 5.7

are not recognizable as complete letter. Only specific parts of the letter 'A' are restored.

The fourth row of figure 5.5 and the fourth and fifth row of figure 5.6 and figure 5.7 con-

tain decoded images that were made based of other squash vectors of non-present class

in the specific image. For each image, the length and the class of its largest squash vector

among the non-present classes is provided. For example, for image A1 the squash vector

for class 'O' has a length of 0.25. Despite the large squash vector for the correct class 'A'

is ||vA|| = 0.90, the decoded image of the unmasked squash array is impacted by this

short squash vector too. In this case, the image for 'O' has an arc on the top which is not

found in the decoded image for 'A' based on the masked squash tensor but it is found in

the decoded image from the unmasked squash tensor. This indicates a superposition of

50

Creation of Image Rankings

the decodings of all squash vectors.

For image A4 and A5 in figure 5.6, the decodings from the next two largest squash vec-

tors of non-present classes are illustrated. The reason for this is, that the lengths of their

second largest incorrect squash vectors are still comparably high to the remaining squash

vectors. The capsule-decoder-network sees in image A4 not only features of the class 'A'

but also features of class 'Q' and features of class 'N'. The superposition of this letters

still produce the image of an 'A' at the output but especially the 'A's right line is not re-

constructed properly despite seen the masked 'A'. Because it was not recognized for the

'Q' and for the 'N' the intensity decreases to a point, by which it becomes smaller than

it would have been in comparison to the pure decoding of the masked squash array for

class 'A'.

The same phenomenon occurs to a greater extend for image A5. In this case, the 'A' is

recognized properly, but in the image of the unmasked squash array is overlaid by the

recognition of the class 'K' and the class 'X'. In comparison to the preceding letter A4, in

this case the squash vectors for the correct and incorrect class are closer to each other:

||vA|| = 0.69 compared to ||vK|| = 0.51. This leads to an higher impact of class 'K' onto

the decoded image. As a consequence, the letter 'A' is not decoded completely and the

upper right slash of the 'A' is missing. A smaller difference between the length of the

squash vectors seems to lead to a stronger superposition in the decoded image. This su-

perposition could be the reason for the restoring of some details which are not predicted

by the correct class: If a detail of a letter is assigned to a different class with a sufficient

large squash vector, this detail is also restored in the output image.

The behaviour of the letters in figure D.3 is equivalent. Therein, the letters are almost

not recognizable but their particular features are comparably well restored by the super-

position of multiple decoded images of low squash vectors. Likewise, for class 'C' and

class 'K', a superposition of the decoded images of large squash vectors is observed. One

remarkable example of the restoration of an incorrect feature is shown in figure D.3 for

image A9. Although the 'C' of the original image is not properly reconstructed by the

prediction of its class, it is partially restored by the prediction of class 'R'. A similar effect

takes place in figure D.6 for letter A2. The serif-like line on the right top of the 'K' is

interpreted as feature of the class 'C' but not of class 'K'. Because the length of the squash

vector for class 'C' is comparably high, this detail is found in the decoded image of the

51

Creation of Image Rankings

unmasked squash array.

Another remarkable effect is found in figure 5.7: While the first masked prediction of

A9 was made based on a squash vector length of ||vC|| = 0.51 its decoded image is sig-

nificantly worse than the comparable one for A12, which has a squash vector length of

||vC|| = 0.38. The reason for this lays probably in the single values of both squash vec-

tors: The decoder learns to restore images from a specific search space and the weights

are adjusted on it. If the single values do not fit into the search space, the decoding qual-

ity is low in comparison to the large squash vector. In the opposite case, if a short squash

vector has features that are part of the search space, the restored image gets a higher

quality. This also explains the comparatively large variation of SSIM results for squash

vectors of similar length (figure 5.3).

In conclusion, the squash vector supports the separation of the capsule-decoder-net-

work's perception for each class. The lager the squash vector of a class, the higher is

its impact on the decoded image.

Independent from the affiliation to the present or non-present class, all squash vectors

have in common that the rise of the length leads to an increase of the intensity and clarity

of the image. The threshold for clear letters seems to be around a squash vector length

of 0.70. Despite that, there is also a difference in the clarity between decodings from a

squash vector length of 0.70 and 0.90.

The squash vectors of the non-present classes have a significant impact on the decoded

image. The areas of the decodings of non-present squash vectors give an insight which

features are perceived by the capsule-decoder-network: These features help to explain

which areas are misunderstood from the capsule-decoder-network and how they were

interpreted. It is possible to tell the certainty and the area for the correct class and simul-

taneously the classes that are also perceived by the capsule-decoder-network.

52

Creation of Image Rankings

Image Number A1 A2 A3 A4

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vA|| = 0.90 ||vA|| = 0.83 ||vA|| = 0.82 ||vA|| = 0.81

Masked Prediction

||vnonpresent|| ||vO|| = 0.25 ||vB|| = 0.42 ||vO|| = 0.43 ||vB|| = 0.31

Figure 5.5: Comparison of masked predictions and unmasked predictions for class 'A'
and the predictions from 'non-present' squash vectors

Image Number A4 A5 A6 A8

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vA|| = 0.71 ||vA|| = 0.69 ||vA|| = 0.68 ||vA|| = 0.68

Masked Prediction

||vnonpresent|| ||vQ|| = 0.42 ||vK|| = 0.54 ||vB|| = 0.54 ||vN || = 0.53

Masked Prediction

||vnonpresent|| ||vN || = 0.27 ||vX|| = 0.33

Figure 5.6: Comparison of masked predictions and unmasked predictions for class 'A'
and the predictions for non-present squash vectors

53

Creation of Image Rankings

Image Number A9 A10 A11 A12

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vA|| = 0.62 ||vA|| = 0.51 ||vA|| = 0.49 ||vA|| = 0.25

Masked Prediction

||vnonpresent|| ||vX|| = 0.44 ||vR|| = 0.26 ||vS|| = 0.37 ||vN || = 0.35

Masked Prediction

||vnonpresent|| ||vB|| = 0.24 ||vC|| = 0.36

Figure 5.7: Comparison of masked predictions and unmasked predictions for class 'A'
and the predictions from non-present squash vectors

For a large-scale estimation about the applicability of the usage of squash vectors of non-

present classes, the following procedure is performed: For each class specific test set of

256 images, the largest squash vector of all non-present classes is determined. The class

that corresponds to this squash vector and its length are stored. For each class the num-

ber of instances is counted in which each non-present class provided the highest squash

vector. Additionally, the interval of all highest squash vectors of each non-present class

is stored. Based on this data, an overview is created. The results for class 'A' are shown

in table 5.1 on page 56. A comparable overview is created for the remaining classes 'B' to

'Z' from table D.1 on page 89 to table D.11 on page 99.

Therein, the results for the non-present squash vectors are additionally grouped in in-

tervals of 0.1, which are provided in the left column of the table. The results for the

non-present classes are shown in the remaining columns. Each entry for a non-present

class consists of three values: The first value is the number of instances in the test dataset

of 256 images, that this specific class provided the largest squash vector of a non-present

54

Creation of Image Rankings

class. For instance, in the first row, the class 'B' generated the highest squash vector of a

non-present class 15 times. Below the number of instances, the maximum and minimum

of their squash vectors is noted. For the example of the non-present class 'B' in the first

row, of all 15 these squash vectors, the largest has a length of 0.26 and the shortest had a

length of 0.08.

In the majority of cases, the highest squash vector for the non-present class is smaller

than the squash vector for the present class. Only for a few images, a low squash vector

is generated for the present class and the squash vector of a non-present class reaches a

higher value. In table 5.1, this occurs for squash vectors of class 'A' below a length of 0.2,

as visible in the corresponding interval of 0.2 ≤ ||vA|| < 0.3. At the bottom row of the

table, the number of instances that this class generated the highest non-present squash

vector is noted. For instance, class 'B' was found in 54 images among all 256 images gen-

erating the largest non-present squash vector.

Based on the ranking of figure 5.4, the more features the capsule-decoder-network finds

for the present class, the larger the squash vector of the class. The same is true for the

lengths of the non-present squash vectors. Therefore, the length of the squash vector

of non-present classes provides insights to the model's perception. The minimum and

maximum value in table 5.1 (and all corresponding tables for class 'B' to 'Z') provide

information about the intensity of the detection of the non-present class. Based on the

loss function, the length for a non-present squash vector is targeted to reach a value be-

low 0.10. Therefore, if the length of the highest squash vector for a non-present class

is < 0.10, the length of all other remaining squash vectors of non-present classes are

even smaller. If simultaneously the length of the present squash vector is ≥ 0.90 the

network solely perceives the present letter and nothing else. Even if the squash vector

of the non-present class is slightly larger than 0.10 and the squash vector of the present

class is slightly smaller than 0.90 the prediction of the capsule-decoder-network is still

comparably unambiguous.

55

Creation of Image Rankings

Table 5.1: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'A'.

Squash Vector 'A' Largest Squash Vector of Non-Present Class

Length Interval

B C E K N O Q R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 15 2 5 4 3 1 0 11 1 2 0
0.26 0.19 0.14 0.19 0.16 0.10 - 0.31 0.11 0.12 -
0.08 0.15 0.08 0.12 0.12 0.11 - 0.10 0.11 0.10 -

0.8 ≤ ||vA|| < 0.9 29 6 4 11 17 7 12 36 4 21 9
0.42 0.15 0.18 0.27 0.29 0.43 0.31 0.39 0.25 0.33 0.24
0.09 0.10 0.08 0.12 0.09 0.11 0.10 0.11 0.10 0.11 0.12

0.7 ≤ ||vA|| < 0.8 7 0 0 2 7 2 6 9 0 2 0
0.34 - - 0.43 0.71 0.28 0.42 0.32 - 0.36 -
0.14 - - 0.32 0.17 0.21 0.13 0.19 - 0.30 -

0.6 ≤ ||vA|| < 0.7 2 0 0 3 3 0 2 0 0 1 0
0.55 - - 0.54 0.53 - 0.40 - - 0.44 -
0.37 - - 0.22 0.24 - 0.35 - - 0.44 -

0.5 ≤ ||vA|| < 0.6 0 0 0 1 0 0 1 2 0 0 1
- - - 0.34 - - 0.40 0.34 - - 0.34
- - - 0.34 - - 0.40 0.32 - - 0.34

0.4 ≤ ||vA|| < 0.5 1 0 0 0 1 0 1 0 0 0 0
0.62 - - - 0.35 - 0.43 - - - -
0.62 - - - 0.35 - 0.43 - - - -

0.3 ≤ ||vA|| < 0.4 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.2 ≤ ||vA|| < 0.3 0 0 0 1 1 0 0 0 0 0 0
- - - 0.41 0.37 - - - - - -
- - - 0.41 0.37 - - - - - -

Sum of Instances 54 8 9 22 32 10 22 58 5 26 10

If the squash vector of a non-present class is significantly larger than 0.10, then features

of this non-present class were detected in the image. Which elements of the present class

impacted the non-present class is not apparent by the size of the squash vector. But in

relation to figure 5.4 a larger squash vector is generated if more features of the class were

found.

The difference between the length of squash vector of the present class and the length

of the squash vector of the non-present class are decreasing for the length intervals of

class 'A' in table 5.1. Although the squash vector of different classes are not coupled, it is

56

Creation of Image Rankings

unlikely that features unique for one class are simultaneously unique for a second class.

If the clarity of the features decreases, they are likely to be assigned to other classes.

Before the capsule layer is passed, the input image is processed by two convolutional

layers, that 'prepare' the features for the low-level capsules. These features are ideally

only concatenated into those low-level capsule that connect with the high-level capsule

assigned to the present class. If features are concatenated into other low-level capsules

than the length squash vector of the non-present class rises. If there is only one feature

in a non-present low-level capsule, this is the single low-level capsule to reinforce the

squash vector for the non-present class, so that its squash vector only rises to a small

degree. This explains why large squash vectors do not tend to have other large squash

vectors besides them.

The minimal length for squash vectors increases when the length of the squash vector for

the present class is decreasing. This supports the thesis that more features are detected

for non-present classes if less features are detected for the present class. This reaches

a point by which the squash vector for the non-present class becomes larger than the

squash vector of the present classes. In table 5.1 this point is reached for a squash vector

of 'A' shorter than 0.3. Because the prediction of the capsule-decoder-network is based

on the largest squash vector, for those images an incorrect class was predicted.

Generally, short squash vectors describe a low certainty of the model for the prediction.

If another squash vector is higher than the capsule-decoder-network detected features

for a different class, this class is detected instead of the correct class. If all squash vectors

are short, the capsule-decoder-network does not find features assigned to any class.

In several cases, a substantial difference lays between the interval of the largest and small-

est non-present squash vector for one class. For example, in table 5.1 within the interval

0.7 ≤ ||vA|| < 0.8, the squash vectors for class 'N' range from 0.17 to 0.71. This means that

in all those cases stronger evidence for class 'N' is found than for all other non-present

classes. For the case of a squash vector of 0.71 these elements were comparably clearer

than in the case for a squash vector of 0.17. In the bottom row of table 5.1 the relation

between features of the present and the non-present class is apparent: In images of class

'A' features for class 'B' or class 'R' are recognized frequently. Very seldom, the features of

the class 'C', 'E' and 'S' are found.

In table 5.1 (and in all other corresponding overviews for class 'B' to 'Z'), for each class

57

Creation of Image Rankings

the number of instances that is generated the largest non-present squash vector is calcu-

lated. All the results are summarized in table 5.2 to provide an insight to the perception

of the capsule-decoder-network. From this table it becomes apparent which features the

capsule-decoder-network recognizes more or less frequently for a present class. Based on

this matrix, the vision of the capsule-decoder-network is explored in more detail in the

next section 5.3.

Table 5.2: Number of instances of the largest squash vector of non-present classes in com-
parison to the present class

Correct Class Number of Highest Squash Vector of Non-Present Class

A B C E K N O Q R S X Z

A - 54 8 9 22 32 10 22 58 5 26 10
B 45 - 26 44 11 1 30 11 37 21 12 18
C 6 14 - 43 26 4 62 25 30 15 4 27
E 8 30 28 - 43 9 11 15 44 37 8 23
K 12 6 21 19 - 18 0 7 90 3 72 8
N 51 14 15 8 36 - 20 42 35 2 21 11
O 28 40 53 14 8 19 - 46 24 13 4 7
Q 27 22 22 6 10 30 50 - 31 32 9 17
R 22 26 27 9 86 19 2 27 - 4 17 17
S 6 61 10 39 11 12 17 34 25 - 25 16
X 27 6 17 15 89 18 2 13 20 21 - 28
Z 14 21 43 23 18 10 5 11 53 16 42 -

5.3 IMAGE RANKINGS FOR TRANSFORMED IMAGES OF SIMILAR CLASSES

In table 5.2 the classes which are misrecognized most frequently for a present class are

displayed. Based on the table, the classes most frequently found within other classes are

the combinations of class 'K' and 'R' (86 and 90 times), 'C' and 'O' (53 and 62 times). From

the remaining class combination, the next frequent combination is 'A' and 'N' (32 and 51

times).

For these classes, the point at which the class label changes from one class to another is

of great interest to comprehend the capsule-decoder-network's vision. For each combi-

nation, a set of 8 images is created, whose images are gradually morphed from one class

of the combination to the other. The set for the classes 'K' and 'R' are shown in figure 5.8.

The start and endpoint of the image set are images taken from the test dataset and have a

squash vector length larger than 0.89. The artificially morphed images are created manu-

ally. The results for the predictions of the image sets by the capsule-decoder-network are

58

Creation of Image Rankings

Figure 5.8: Morphed image set for the class 'K' and 'R'. The image on the left and on the
right are unmodified images of the EMNIST test dataset. [17] The remaining
images were created manually.

shown from figure 5.9 to figure 5.11 (page 60 to 62).

In figure 5.9 to figure 5.11, the unmasked squash arrays are visualized as well as three

different predictions by the decoder: The prediction based on the unmasked squash ar-

rays of column 3 is shown in column 4. In column 5 and 6, the predictions were produced

for a squash vector that is masked except for the considered class. Below each image of

column 5 and 6, the length of the squash vector of the corresponding class is noted.

The more dark and light pixels are contained in a squash vector, the higher is its length.

Based on image 1 and 8, the position of the squash vector of the considered class is rec-

ognizable. With the modification of the images from one class to the other, the squash

vector of the starting class fades gradually while the other one is rising.

The predictions, that were created with the masked squash array, appear 'smoothed' in

comparison to the input image and to the unmasked prediction. Details that strongly de-

viate from the classic form of the class, for instance the small slash of class 'R' at images

1 to 5 in figure 5.9 or the slash of class 'A' in images 4 and 5 in figure 5.11 are neither

restored in the masked nor in the unmasked prediction.

In comparison, at least one image created from the masked squash array appears of

higher quality than the decoding from the unmasked squash array. The reason for that

could be the previously described superposition of all vectors in the unmasked output

image. The combinations of the single squash vector outputs seem to work based on the

intensity, which seems to be related to the length of the squash vector. As a result, at the

superposition of the restored areas, irregularities may appear in the decoded image as

for example in image 4 of figure 5.9, in which the missing connection point of the letter

'K' is transferred to a missing connection point in the unmasked prediction image. This

happens despite the large squash vector for the class 'R'.

In the transfer between two classes, each image set has one point, on which the length of

the squash vector of is increased by ≥ 0.3 between one image and the next. This threshold

could be explained by the application of the leaky-ReLU [32] function inside the convo-

59

Creation of Image Rankings

No. Input Image Squash Images Reconstructed Images

Unmasked Unmasked Masked Except Class:
'K' 'R'

||vK|| ||vR||

1
0.07 0.91

2
0.12 0.89

3
0.18 0.88

4
0.18 0.85

5
0.41 0.74

6
0.5351 0.7399

7
0.78 0.54

8
0.90 0.18

Figure 5.9: Predictions of the decoder for the image set containing morphed images be-
tween the classes 'K' and 'R'. Column 4 contains the reconstructed images for
the unmasked squash vector of column 3. The images in column 5 and 6 were
created by masking all squash vectors except for class 'K' or class 'R', respec-
tively. The numbers below the images ||vK|| and ||vR|| are the lengths of the
squash vector of the specific class.

60

Creation of Image Rankings

No. Input Image Squash Images Reconstructed Images

Unmasked Unmasked Masked Except Class:
'C' 'O'

||vK|| ||vR||

1
0.91 0.09

2
0.85 0.11

3
0.82 0.20

4
0.81 0.26

5
0.40 0.78

6
0.14 0.88

7
0.04 0.92

8
0.07 0.93

Figure 5.10: Predictions of the decoder for the image set containing morphed images be-
tween the classes 'C' and 'O'. Column 4 contains the reconstructed images
for the unmasked squash vector of column 3. The images in column 5 and
6 were created by masking all squash vectors except for class 'C' or class 'O',
respectively. The numbers below the images ||vC|| and ||vO|| are the lengths
of the squash vector of the specific class.

61

Creation of Image Rankings

No. Input Image Squash Images Reconstructed Images

Unmasked Unmasked Masked Except Class:
'A' 'N'

||vA|| ||vN ||

1
0.03 0.92

2
0.05 0.91

3
0.52 0.47

4
0.67 0.32

5
0.88 0.05

6
0.86 0.04

7
0.90 0.04

8
0.92 0.07

Figure 5.11: Predictions of the decoder for the image set containing morphed images be-
tween the classes 'A' and 'N'.
Column 4 contains the reconstructed images for the unmasked squash vec-
tor of column 3. The images in column 5 and 6 were created by masking
all squash vectors except for class 'A' or class 'N', respectively. The numbers
below the images ||vA|| and ||vN || are the lengths of the squash vector of the
specific class.

62

Creation of Image Rankings

lutional layer. The applied filters are comparatively large (9 pixels), and thus a small

change of a feature could lead to a high change in the input of the low-level capsules.

This could also be an explanation for the reason of the missing restoration of the letter's

upper part in image 3 and 4. In this case, neither the features for class 'A' nor for class

'N' seem to be sufficiently found, so that the upper part of the letter is not predicted for

any of the classes. This seems to result in a threshold for the detection of a class which is

comparable to the human perception. A figure can be assigned to multiple classes which

results in two comparatively high squash vectors. The masked predictions are restored

properly while the unmasked prediction is a combination of both that contains the fea-

tures of the unmasked predictions. This threshold could work as a support to investigate

the features that are crucial for the capsule-decoder-network to detect a class. For class

'K' this is for instance demonstrated from image 4 to 5. In image 4, the arc of the 'R' is too

wide to be counted for class 'K'. In image 5, the arc is more narrow and subsequently, the

squash vector rises strongly. For class 'R' the threshold is visible from image 7 to image 8:

In image 7 a small connection between the vertical line and the upwards slash exists and

the class 'R' has a comparatively high squash vector.

For class 'O' in figure 5.10, the feature to recognize an 'O' is the completion of a circle with

a sufficient intensity as shown from image 4 to image 5. The opposite seems to work as

threshold for the detection of class 'C', whose squash vector length drops from image 5

to image 6. One important feature for class 'N' seems to be the height of its right line

as shown in figure 5.11. The squash vector length drops from image 2 to image 3. The

still comparatively high length drops a second time from image 5 to image 6, as soon as

the inner triangle of the letter gets too large. For the class 'A', the squash vector length

rises between image 2 to image 3, when the right line of the letter is small enough to be

considered as residual. Remarkably the existence of the inverted V-shape seems to have

a higher impact on the prediction of class 'A' that the horizontal line. The reason could

be the existence of class 'B' whose upper part is similar to the upper part of class 'A'. As a

consequence, the capsule-decoder-network relies more on the inverted V-shape.

The exploration of the threshold for different letters gives information about the impor-

tant features for the capsule-decoder-network to recognize a class. Because the threshold

for two letter is not on the same point, ambiguous images are represented by two medium

sized squash vectors.

63

Creation of Image Rankings

64

Summary of Results

6 SUMMARY OF RESULTS

The goal of this thesis was the evaluation of capsule networks for their capability to gen-

erate and explain keyword rankings. Therefore, a capsule-decoder-network was created

in Python using Tensorflow and Keras functions. It was trained on 16384 images be-

longing to 12 classes of handwritten digits taken from the EMNIST dataset [17]. The

architecture of the capsule-decoder-network was based on the architecture proposed in

[16]. Because the reduced EMNIST dataset contains two additional classes to the MNIST

dataset [20] used in [16], the number of high-level capsules was set to 12 in this model.

Subsequently, the model's training parameters, which were also oriented on [16], were

modified to generate the best results for this application: The number of routings inside

the capsule layer was set to 5 instead of 3. The number of neurons in the first and sec-

ond dense layer of the decoder was increased by a factor of four to handle the increased

variation of handwritten letters compared to handwritten digits. The ratio of the capsule

network's loss to the capsule-decoder-network's loss was set to 1 : 0.105. To evaluate the

model, the loss and accuracy of the capsule network, the loss of the capsule-decoder-net-

work and the weighted sum of both losses was recorded.

The trained model generated squash vectors, that were used to create image rankings for

each of the 12 classes of the EMNIST dataset. For each class, a dataset of 256 test images

was created, that contained only letters of the considered class. Each class specific dataset

was inserted into the trained model and the predicted label, the decoded image and the

squash vector of each input image were stored. To verify the usage of the squash vec-

tor for a ranking, a distribution of the length of the present squash vectors was created.

The majority of squash vectors for a class present in the image had a length between 0.70

and 0.99. A few samples were found that generated shorter squash vectors. Decoded

images were created with the capsule-decoder-network based on the squash vectors for

the present class. To support the approach to apply squash vectors for image rankings,

the structural similarity was calculated between the decoded images of masked squash

vectors and the original images. A correlation was found for longer squash vectors to

account for decoded images with a higher SSIM to their original than shorter squash

vectors. The creation of image rankings based on the squash vector was reasoned by this

correlation. For each class-specific dataset of 256 images, a ranking was created for exem-

plary images that had a squash vector between 0.70 and 0.95. Using the masked squash

65

Summary of Results

array, the area that was assigned to the present class by the capsule-decoder-network,

was visualized. The decoded images from masked squash arrays appear smoother with

less irregularities and with less details than the corresponding unmasked prediction of

the input image. In the decoded images from the unmasked squash arrays more irreg-

ularities appear which are either an enhancement or a downsizing of features. In some

cases, details that are missing in the decoded image of the masked squash array are found

in the image of the unmasked squash array. However, the restoration of details is unreli-

able because no correlation between the SSIM of the decoded image from the unmasked

squash vector and the original was found.

To explain the irregularities in decoded images based on unmasked squash arrays, de-

coded images were created based on squash vectors of classes that were not present in

an image but simultaneous had a similar high length. This approach was performed

for three sets of the classes 'A', 'C' and 'K'. Each set consisted of 12 images that gener-

ated differently large squash vectors for the present class. For each set, decoded images

were created for the present squash vector and for the one or two largest non-present

squash vectors. The decoded images of non-present squash vectors explained the reason

for the irregularities in decoded images of unmasked squash arrays: A superposition of

each decoded image from single squash vectors takes place in the decoded image based

on the unmasked squash array. The impact of each squash vector on the decoded im-

age depends on its size: The larger a squash vector, the higher is the intensity of the

restored letter in the decoded image of the unmasked squash array. This behaviour leads

to the conclusion, that the squash vectors of non-present classes contain those features

that the capsule-decoder-network recognized as part of this non-present class. Through

the length of the non-present squash vectors the certainty of the capsule-decoder-net-

work for the class is calculable.

To examine the scale of non-present features for all images in each class-specific dataset,

the length of the largest squash vector was examined. The length and the class of this

squash vector were stored. This led to an overview matrix for all classes, in which fea-

tures of non-present classes were mostly recognized within their images. Through the

lengths comparison of the present and the non-present squash vector, a relation of the

certainty for the present class to the certainty for the non-present class was assessable. It

was found that in a squash array with one large squash vectors no second large squash

66

Summary of Results

vector was generated. When the squash vector's length of the present class decreased,

the number of occurrences of a larger non-present squash vector increased. This is ex-

plainable through a possible ambiguity of features: Features that generate high squash

vectors are clearly assigned to one class. Features, that are less unique, have a higher

chance to be assigned to more than one class. A large squash vector does not suppress

the assignment of features to other classes, but the capsule-decoder-network is trained to

assign these features only to one specific class.

Based on the overview matrix, the three frequent combinations for the recognition of non-

present features in a specific class were examined. These combinations were the letters

'K' and 'R', 'C' and 'O', as well as 'A' and 'N'. The similarity perceived by the capsule-

decoder-network in these classes was used to determine the features important for the

detection through the capsule-decoder-network. Therefore, a set of 8 images was created

for each combination. These sets contained manually, artificially created images whose

letters were gradually transformed from one class to the other. The images were pre-

dicted by the model and decoded images were created based on the unmasked squash

array and on both squash vectors for the original classes. The length of the squash vec-

tor increased or decreased with the construction or deconstruction of the corresponding

class. A threshold was found for each class in the sets by which the length of the squash

vector increased or dropped by a value of ≥ 0.3. Through this threshold specific features

for the recognition of a class were found, like the length of the right line of the letter 'N'

or the connection between the upper and lower part of a 'C' to recognize the class 'O'. The

reason for this threshold was in the 9 × 9 convolutional filters that prepare the input to

the low-level capsules. These filters concatenate a comparatively large area and use the

leaky-ReLU [32] function as activation resulting in a possible large increase of values in

low-level capsules by a slight modification of a feature.

In the transformation from one class to another, the threshold for both classes was found

in different images. Therefore, the capsule-decoder-network is capable of detecting am-

biguous images by the length of the squash vector and simultaneously explaining the

reasons for this decision by the decoded images of the corresponding classes.

Conclusively, it was shown that the length of the squash vector is a quantifiable measure-

ment, which is directly built into the capsule-decoder-network, to evaluate the affiliation

of an image to a specific class. Beside its length, the perceived features are restorable by a

67

Summary of Results

decoder. Further considerations about the squash vectors's explanatory potential and its

possible usage for search engine rankings are carried out in the subsequent section 6.1.

6.1 DISCUSSION OF THE RESULTS AS EXPLANATORY APPROACH

In the introduction of this thesis, the term 'explainability' for an AI system was described

as 'ability to explain technical process' so that they are 'understood by human beings'. [8] The

goal was the explanation of an image ranking based on the perception of the capsule-

decoder-network. Image ranking were defined as categorization of images based on their

affiliation to a specific class.

The length of the squash vector provided a quantifiable possibility to rank images of one

class based on the certainty of the capsule-decoder-network. The features, that led to this

decision, are restorable by the decoder. These features relate to the areas, that contributed

to the increase of the certainty for the class. Through the restoration of the features, the

decision of the capsule-decoder-network becomes comprehensible. It is possible to esti-

mate the scope of the incorrect prediction by the length of the squash vector's class and

explain the reasons for this decision by the letter fragments in the decoded image. These

letter fragments are mostly human-understandable. Furthermore, the features used to

detect a class, are also similar to the features that a human would use for the detection.

The aforementioned explanatory approaches for CNN are post-hoc approaches that cre-

ate their visualization and explanation after the training. However, the squash vector

is directly integrated into the capsule-decoder-network and it is directly used to predict

the class and to decode the image. This close connection between the prediction and the

visualization indicates the validity of the resulting explanatory approach based on the

value of the squash vector and the decoded image. Through this connection, the decod-

ing of the squash vector provides a closer look to the perceived features than common

approaches as Grad-CAM [13] or the creation of saliency maps. [14, 21, 22] Using the

decoder, one could argue that the capsule-decoder-network does not actually use these

features. However, the fact that the restoration is still possible after two convolutional

layers and a capsule layer, indicates that the downsized, encoded features are stored in

the high-level capsules. Thereby, the decoding is a reconstruction of existing features into

a human-understandable format which is a large advantage in comparison to CNN.

The decoded images and the length of the squash vector are a valid base to create im-

68

Summary of Results

age rankings and to explore the features that are used by the capsule-decoder-network.

The restored features are human-comprehensible and can especially support the detec-

tion and explanation of ambiguities in images.

Despite the advantages of capsule networks regarding the explainability, this approach

does not lead to a complete explanation of the capsule-decoder-network's decision. The

squash vector is a tool that generates a comprehensible explanation, but it does not pro-

vide the reasons for the decision of the capsule-decoder-network: Despite the decoded

letter fragments being understandable, it remains unclear, why they were interpreted as

a specific non-present class. The reason therefore lays probably in the convolutional lay-

ers, that modify the features for the capsules.

An obstacle in the usage of capsule networks is their comparably time-consuming and

error-prone implementation process. The dynamic routing algorithm generates addi-

tional parameters for which the adjustment experience is limited. Besides that it offers

more possibilities, the implementation and optimization is more elaborate.

All summarized, the explanation of image rankings is in fact possible by using capsule

networks. The explanation works on the vision of the capsule-decoder-network and the

results are comparatively human-understandable. A large advantage is the simultane-

ous evaluation of all classes. Especially in search engines, this simultaneous evaluation

could support the findings for alternative keywords. Therefore, capsule networks have

the potential to be applied in search engines in the future.

6.2 FURTHER RESEARCH

In this thesis, the capsule-decoder-network was trained on a comparatively simple

dataset. For further research, the application of capsule networks for more complex

datasets could be evaluated. For this case, modifications will be necessary because [16]

already described difficulties in the training to the CIFAR [46] dataset. In this thesis, an

attempt to train on the intel dataset also failed. To explore the potential of capsule net-

works more extensively, an implementation of capsule layers in the common libraries

as Tensorflow or Keras would be especially helpful. By making capsule networks more

accessible the research on this topic is encouraged and the potential of capsule networks

can be investigated to a greater degree. Thereby, a special look could be taken to the

impact of the decoder on the restored images and on the coupling coefficients, because

69

Summary of Results

their values could evaluate the impact of the dynamic routing to the learning process of

the capsule-decoder-network.

70

Distribution of Squash Vectors for class specific datasets 'B' to 'Z'

A DISTRIBUTION OF SQUASH VECTORS FOR CLASS SPECIFIC

DATASETS 'B' TO 'Z'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

Value Range of Squash Vectors for Class 'B'

N
u

m
b

er
o

f
Im

ag
es

Figure A.1: Distribution of squash vectors from 256 test images containing class 'B'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'C'

N
u

m
b

er
o

f
Im

ag
es

Figure A.2: Distribution of squash vectors from 256 test images containing class 'C'

71

Distribution of Squash Vectors for class specific datasets 'B' to 'Z'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'E'

N
u

m
b

er
o

f
Im

ag
es

Figure A.3: Distribution of squash vectors from 256 test images containing class 'E'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'K'

N
u

m
b

er
o

f
Im

ag
es

Figure A.4: Distribution of squash vectors from 256 test images containing class 'K'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'N'

N
u

m
b

er
o

f
Im

ag
es

Figure A.5: Distribution of squash vectors from 256 test images containing class 'N'

72

Distribution of Squash Vectors for class specific datasets 'B' to 'Z'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'O'

N
u

m
b

er
o

f
Im

ag
es

Figure A.6: Distribution of squash vectors from 256 test images containing class 'O'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'Q'

N
u

m
b

er
o

f
Im

ag
es

Figure A.7: Distribution of squash vectors from 256 test images containing class 'Q'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

Value Range of Squash Vectors for Class 'R'

N
u

m
b

er
o

f
Im

ag
es

Figure A.8: Distribution of squash vectors from 256 test images containing class 'R'

73

Distribution of Squash Vectors for class specific datasets 'B' to 'Z'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'S'

N
u

m
b

er
o

f
Im

ag
es

Figure A.9: Distribution of squash vectors from 256 test images containing class 'S'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

Value Range of Squash Vectors for Class 'X'

N
u

m
b

er
o

f
Im

ag
es

Figure A.10: Distribution of squash vectors from 256 test images containing class 'X'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

Value Range of Squash Vectors for Class 'Z'

N
u

m
b

er
o

f
Im

ag
es

Figure A.11: Distribution of squash vectors from 256 test images containing class 'Z'

74

Structural Similarity for Decoded Images of Masked Squash Vectors

B STRUCTURAL SIMILARITY FOR DECODED IMAGES OF MASKED

SQUASH VECTORS

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vB||

S
S

IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vC||
S

S
IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vE||

S
S

IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vK||

S
S

IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vN ||

S
S

IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vO||

S
S

IM

Figure B.1: Plots of structural similarity (SSIM) for the squash vectors of class 'B' to 'O'

75

Structural Similarity for Decoded Images of Masked Squash Vectors

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vQ|

S
S

IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vR||

S
S

IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vS||

S
S

IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vX||

S
S

IM

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

||vZ||

S
S

IM

Figure B.2: Plots of structural similarity (SSIM) for the squash vectors of class 'S' to 'Z'

76

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

C RANKINGS FOR MASKED AND UNMASKED SQUASH VECTORS

'B' - 'Z'

77

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

||
v

B
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
B
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

||
v

B
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.1

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'B
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

78

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

||
v

C
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
C
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

||
v

C
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.2

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'C
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

79

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

||
v

E
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
E
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

||
v

E
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.3

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'E
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

80

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-
-

||
v

K
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
K
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

||
v

K
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.4

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'A
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

81

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-
||

v
N
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
N
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

||
v

N
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.5

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'N
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

82

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

||
v

O
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
O
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

||
v

O
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.6

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'O
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

83

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

||
v

Q
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
Q
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
||

v
Q
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.7

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'Q
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

84

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-
-

||
v

R
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
R
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
R
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.8

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'R
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

85

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

||
v

S
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

||
v

S
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

||
v

S
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.9

:
R

an
k

in
g

o
f

im
ag

es
fo

r
cl

as
s

'S
'b

as
ed

o
n

th
e

le
n

g
th

o
f

th
e

co
rr

es
p

o
n

d
in

g
sq

u
as

h
ar

ra
y

fo
r

th
re

e
in

te
rv

al
s

b
et

w
ee

n
0.

7
an

d
0.

99
.

86

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

-
||

v
X
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
X
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
||

v
X
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.1

0
:

R
an

k
in

g
o

f
im

ag
es

fo
r

cl
as

s
'X

'b
as

ed
o

n
th

e
le

n
g

th
o

f
th

e
co

rr
es

p
o

n
d

in
g

sq
u

as
h

ar
ra

y
fo

r
th

re
e

in
te

rv
al

s
b

et
w

ee
n

0.
7

an
d

0.
99

.

87

Rankings for Masked and Unmasked Squash Vectors 'B' - 'Z'

In
p

u
t

Im
a
g

e

O
ri

g
in

al
-

-
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

-
-

||
v

Z
||

0.
99

0.
98

0.
97

0.
96

0.
95

0.
94

0.
93

0.
92

0.
91

0.
90

O
ri

g
in

al

U
n

m
as

k
ed

P
re

d
ic

ti
o

n

M
as

k
ed

P
re

d
ic

ti
o

n
||

v
Z
||

0.
89

0.
88

0.
87

0.
86

0.
85

0.
84

0.
83

0.
82

0.
81

0.
80

O
ri

g
in

al
-

-
-

U
n

m
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

M
as

k
ed

P
re

d
ic

ti
o

n
-

-
-

||
v

Z
||

0.
79

0.
78

0.
77

0.
76

0.
75

0.
74

0.
73

0.
72

0.
71

0.
70

F
ig

u
re

C
.1

1
:

R
an

k
in

g
o

f
im

ag
es

fo
r

cl
as

s
'Z

'b
as

ed
o

n
th

e
le

n
g

th
o

f
th

e
co

rr
es

p
o

n
d

in
g

sq
u

as
h

ar
ra

y
fo

r
th

re
e

in
te

rv
al

s
b

et
w

ee
n

0.
7

an
d

0.
99

.

88

Comparison of Largest Non-Present Squash Vectors

D COMPARISON OF LARGEST NON-PRESENT SQUASH VECTORS

Table D.1: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'B'.

Squash Vector 'B' Largest Squash Vector of Non-Present Class

Length Interval

A C E K N O Q R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 18 5 12 1 0 2 1 2 1 4 6
0.35 0.26 0.25 0.11 - 0.18 0.09 0.11 0.16 0.35 0.14
0.08 0.09 0.08 0.11 - 0.17 0.09 0.09 0.16 0.14 0.10

0.8 ≤ ||vA|| < 0.9 17 14 21 7 1 11 5 20 16 8 8
0.46 0.31 0.37 0.44 0.15 0.38 0.24 0.40 0.27 0.31 0.52
0.13 0.11 0.10 0.14 0.15 0.12 0.13 0.10 0.11 0.10 0.11

0.7 ≤ ||vA|| < 0.8 7 4 4 0 0 5 2 9 3 0 2
0.35 0.30 0.51 - - 0.54 0.46 0.50 0.29 - 0.60
0.20 0.21 0.21 - - 0.22 0.22 0.21 0.23 - 0.41

0.6 ≤ ||vA|| < 0.7 2 1 4 1 0 9 2 2 1 0 1
0.56 0.19 0.28 0.41 - 0.61 0.35 0.34 0.27 - 0.24
0.31 0.19 0.24 0.41 - 0.30 0.34 0.25 0.27 - 0.24

0.5 ≤ ||vA|| < 0.6 1 1 2 1 0 1 0 2 0 0 0
0.53 0.30 0.65 0.29 - 0.66 - 0.51 - - -
0.53 0.30 0.49 0.29 - 0.66 - 0.42 - - -

0.4 ≤ ||vA|| < 0.5 0 0 0 0 0 1 0 0 0 0 1
- - - - - 0.56 - - - - 0.69
- - - - - 0.56 - - - - 0.69

0.3 ≤ ||vA|| < 0.4 0 0 1 0 0 0 0 2 0 0 0
- - 0.31 - - - - 0.79 - - -
- - 0.31 - - - - 0.66 - - -

0.2 ≤ ||vA|| < 0.3 0 0 0 1 0 1 0 0 0 0 0
- - - 0.31 - 0.68 - - - - -
- - - 0.31 - 0.68 - - - - -

0.1 ≤ ||vA|| < 0.2 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.0 ≤ ||vA|| < 0.1 0 1 0 0 0 0 1 0 0 0 0
- 0.55 - - - - 0.83 - - - -
- 0.55 - - - - 0.83 - - - -

Sum of Instances 45 26 44 11 1 30 11 37 21 12 18

89

Comparison of Largest Non-Present Squash Vectors

Table D.2: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'C'.

Squash Vector 'C' Largest Squash Vector of Non-Present Class

Length Interval

A C E K N O Q R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 1 2 11 7 1 20 5 11 3 1 6
0.11 0.09 0.15 0.17 0.12 0.15 0.18 0.24 0.13 0.12 0.13
0.11 0.08 0.10 0.08 0.12 0.08 0.12 0.08 0.06 0.12 0.10

0.8 ≤ ||vA|| < 0.9 2 11 21 17 3 35 16 13 10 3 18
0.2 0.41 0.33 0.26 0.19 0.28 0.29 0.38 0.39 0.15 0.26

0.16 0.12 0.08 0.09 0.13 0.08 0.10 0.12 0.07 0.07 0.09

0.7 ≤ ||vA|| < 0.8 0 1 9 1 0 4 2 3 1 0 3
- 0.32 0.43 0.18 - 0.26 0.30 0.32 0.15 - 0.32
- 0.32 0.21 0.18 - 0.22 0.27 0.25 0.15 - 0.32

0.6 ≤ ||vA|| < 0.7 3 0 1 1 0 2 0 0 0 0 0
0.30 - 0.36 0.21 - 0.55 - - - - -
0.22 - 0.36 0.21 - 0.48 - - - - -

0.5 ≤ ||vA|| < 0.6 0 0 0 0 0 0 1 0 0 0 0
- - - - - - 0.26 - - - -
- - - - - - 0.26 - - - -

0.4 ≤ ||vA|| < 0.5 0 0 0 0 0 1 1 1 0 0 0
- - - - - 0.77 0.46 0.38 - - -
- - - - - 0.77 0.46 0.38 - - -

0.3 ≤ ||vA|| < 0.4 0 0 0 0 0 0 0 1 0 0 0
- - - - - - - 0.67 - - -
- - - - - - - 0.67 - - -

0.2 ≤ ||vA|| < 0.3 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.1 ≤ ||vA|| < 0.2 0 0 1 0 0 0 0 1 0 0 0
- - 0.6 - - - - 0.71 - - -
- - 0.6 - - - - 0.71 - - -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 1 0 0
- - - - - - - - 0.50 - -
- - - - - - - - 0.50 - -

Sum of Instances 6 14 43 26 4 62 25 30 15 4 27

90

Comparison of Largest Non-Present Squash Vectors

Table D.3: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'E'.

Squash Vector 'E' Number of Classes with Second Largest Squash Vector

Length Interval

A B C K N O Q R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 3 8 5 14 4 3 5 4 10 0 7
0.14 0.18 0.24 0.23 0.21 0.17 0.19 0.20 0.20 - 0.23
0.08 0.07 0.10 0.07 0.08 0.12 0.07 0.12 0.10 - 0.10

0.8 ≤ ||vA|| < 0.9 3 17 14 19 3 5 9 33 19 7 9
0.15 0.39 0.30 0.40 0.21 0.16 0.38 0.63 0.34 0.26 0.35
0.13 0.09 0.09 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.11

0.7 ≤ ||vA|| < 0.8 2 3 6 8 0 2 1 5 6 0 1
0.38 0.27 0.35 0.53 - 0.23 0.22 0.55 0.28 - 0.3
0.21 0.13 0.22 0.25 - 0.18 0.22 0.24 0.22 - 0.3

0.6 ≤ ||vA|| < 0.7 0 1 3 1 1 1 0 1 1 1 4
- 0.54 0.56 0.37 0.31 0.21 - 0.47 0.46 0.24 0.36
- 0.54 0.56 0.37 0.31 0.21 - 0.47 0.46 0.24 0.36

0.5 ≤ ||vA|| < 0.6 0 0 0 0 0 0 0 1 1 0 0
- - - - - - - 0.41 0.42 - -
- - - - - - - 0.41 0.42 - -

0.4 ≤ ||vA|| < 0.5 0 1 0 0 1 0 0 0 0 0 1
- 0.24 - - 0.66 - - - - - 0.47
- 0.24 - - 0.66 - - - - - 0.47

0.3 ≤ ||vA|| < 0.4 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.2 ≤ ||vA|| < 0.3 0 0 0 1 0 0 0 0 0 0 1
- - - 0.52 - - - - - - 0.45
- - - 0.52 - - - - - - 0.45

0.1 ≤ ||vA|| < 0.2 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 8 30 28 43 9 11 15 44 37 8 23

91

Comparison of Largest Non-Present Squash Vectors

Table D.4: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'K'.

Squash Vector 'K' Largest Squash Vector of Non-Present Class

Length Interval

A B C E N O Q R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 0 1 3 2 1 0 1 2 0 3 1
- 0.24 0.19 0.16 0.12 - 0.11 0.24 - 0.18 0.10
- 0.24 0.11 0.15 0.12 - 0.11 0.12 - 0.12 0.10

0.8 ≤ ||vA|| < 0.9 4 4 9 14 14 0 3 74 3 47 6
0.19 0.16 0.63 0.60 0.38 - 0.20 0.46 0.24 0.39 0.21
0.11 0.10 0.12 0.12 0.12 - 0.13 0.09 0.13 0.08 0.07

0.7 ≤ ||vA|| < 0.8 3 1 6 2 3 0 3 10 0 15 0
032 0.32 0.62 0.44 0.28 - 0.58 0.67 - 0.67 -
0.15 0.32 0.19 0.28 0.26 - 0.18 0.14 - 0.14 -

0.6 ≤ ||vA|| < 0.7 1 0 0 0 0 0 0 2 0 5 0
0.26 - - - - - - 0.52 - 0.50 -
0.26 - - - - - - 0.31 - 0.31 -

0.5 ≤ ||vA|| < 0.6 1 0 0 0 0 0 0 1 0 1 0
0.24 - - - - - - 0.67 - 0.52 -
0.24 - - - - - - 0.67 - 0.52 -

0.4 ≤ ||vA|| < 0.5 0 0 1 0 0 0 0 1 0 0 1
- - 0.72 - - - - 0.65 - - 0.58
- - 0.72 - - - - 0.65 - - 0.58

0.3 ≤ ||vA|| < 0.4 0 0 1 0 0 0 0 0 0 1 0
- - 0.38 - - - - - - 0.62 -
- - 0.38 - - - - - - 0.62 -

0.2 ≤ ||vA|| < 0.3 2 0 0 1 0 0 0 0 0 0 0
0.59 - - 0.42 - - - - - - -
0.44 - - 0.42 - - - - - - -

0.1 ≤ ||vA|| < 0.2 1 0 1 0 0 0 0 0 0 0 0
0.35 - 0.82 - - - - - - - -
0.35 - 0.82 - - - - - - - -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 12 6 21 19 18 0 7 90 3 72 8

92

Comparison of Largest Non-Present Squash Vectors

Table D.5: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'N'.

Squash Vector 'N' Largest Squash Vector of Non-Present Class

Length Interval

A B C E K O Q R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 16 6 3 3 14 6 12 12 0 8 3
0.28 0.14 0.14 0.14 0.16 0.28 0.21 0.17 - 0.27 0.16
0.08 0.08 0.12 0.11 0.08 0.09 0.08 0.08 - 0.06 0.10

0.8 ≤ ||vA|| < 0.9 27 8 11 5 17 11 25 18 2 7 8
0.31 0.21 0.28 0.23 0.47 0.45 0.36 0.33 0.28 0.36 0.20
0.09 0.10 0.09 0.10 0.10 0.11 0.09 0.11 0.14 0.11 0.09

0.7 ≤ ||vA|| < 0.8 3 0 0 0 4 3 4 3 0 3 0
0.53 - - - 0.44 0.33 0.45 0.24 - 0.42 -
0.34 - - - 0.22 0.20 0.27 0.21 - 0.28 -

0.6 ≤ ||vA|| < 0.7 1 0 0 0 0 0 1 2 0 1 0
0.28 - - - - - 0.47 0.35 - 0.39 -
0.28 - - - - - 0.47 0.31 - 0.39 -

0.5 ≤ ||vA|| < 0.6 2 0 1 0 0 0 0 0 0 0 0
0.33 - 0.61 - - - - - - - -
0.33 - 0.61 - - - - - - - -

0.4 ≤ ||vA|| < 0.5 1 0 0 0 1 0 0 0 0 2 0
0.43 - - - 0.52 - - - - 0.35 -
0.43 - - - 0.52 - - - - 0.35 -

0.3 ≤ ||vA|| < 0.4 1 0 0 0 0 0 0 0 0 0 0
0.59 - - - - - - - - - -
0.59 - - - - - - - - - -

0.2 ≤ ||vA|| < 0.3 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.1 ≤ ||vA|| < 0.2 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 51 14 15 8 36 20 42 35 2 21 11

93

Comparison of Largest Non-Present Squash Vectors

Table D.6: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'O'.

Squash Vector 'O' Largest Squash Vector of Non-Present Class

Length Interval

A B C E K N Q R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 10 16 11 3 5 9 8 9 6 3 0
0.22 0.20 0.33 0.13 0.16 0.15 0.28 0.23 0.12 0.12 -
0.07 0.08 0.10 0.11 0.09 0.09 0.10 0.11 0.05 0.09 -

0.8 ≤ ||vA|| < 0.9 15 17 32 10 3 8 21 13 5 1 5
0.29 0.33 0.47 0.22 0.23 0.19 0.42 0.23 0.14 0.07 0.18
0.08 0.10 0.09 0.12 0.10 0.10 0.09 0.10 0.09 0.07 0.12

0.7 ≤ ||vA|| < 0.8 2 4 8 1 0 2 14 2 2 0 2
0.41 0.49 0.47 0.26 - 0.43 0.53 0.28 0.20 - 0.20
0.21 0.16 0.12 0.26 - 0.21 0.14 0.16 0.17 - 0.20

0.6 ≤ ||vA|| < 0.7 0 1 0 0 0 0 2 0 0 0 0
- 0.46 - - - - 0.44 - - - -
- 0.46 - - - - 0.37 - - - -

0.5 ≤ ||vA|| < 0.6 1 1 0 0 0 0 1 0 0 0 0
0.57 0.60 - - - - 0.32 - - - -
0.57 0.60 - - - - 0.32 - - - -

0.4 ≤ ||vA|| < 0.5 0 1 0 0 0 0 0 0 0 0 0
- 0.49 - - - - - - - - -
- 0.49 - - - - - - - - -

0.3 ≤ ||vA|| < 0.4 0 0 1 0 0 0 0 0 0 0 0
- - 0.65 - - - - - - - -
- - 0.65 - - - - - - - -

0.2 ≤ ||vA|| < 0.3 0 0 1 0 0 0 0 0 0 0 0
- - 0.50 - - - - - - - -
- - 0.50 - - - - - - - -

0.1 ≤ ||vA|| < 0.2 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 28 40 53 14 8 19 46 24 13 4 7

94

Comparison of Largest Non-Present Squash Vectors

Table D.7: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'Q'.

Squash Vector 'Q' Largest Squash Vector of Non-Present Class

Length Interval

A B C E K N O R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 5 6 5 2 3 9 14 3 11 3 7
0.11 0.23 0.16 0.23 0.14 0.18 0.30 0.18 0.33 0.18 0.27
0.09 0.09 0.08 0.09 0.09 0.12 0.07 0.11 0.10 0.12 0.08

0.8 ≤ ||vA|| < 0.9 16 11 14 3 6 16 19 25 14 5 8
0.34 0.36 0.39 0.38 0.21 0.25 0.34 0.44 0.46 0.22 0.26
0.11 0.12 0.21 0.12 0.10 0.12 0.11 0.11 0.08 0.12 0.08

0.7 ≤ ||vA|| < 0.8 2 3 1 1 1 4 10 1 7 0 0
0.41 0.30 0.41 0.22 0.17 0.54 0.67 0.37 0.39 - -
0.20 0.21 0.41 0.22 0.17 0.22 0.18 0.37 0.22 - -

0.6 ≤ ||vA|| < 0.7 2 1 1 0 0 0 5 1 0 0 2
0.52 0.38 0.38 - - - 0.65 0.49 - - 0.26
0.37 0.38 0.38 - - - 0.23 0.49 - - 0.26

0.5 ≤ ||vA|| < 0.6 1 0 0 0 0 1 0 0 0 0 0
0.41 - - - - 0.28 - - - - -
0.41 - - - - 0.28 - - - - -

0.4 ≤ ||vA|| < 0.5 0 0 1 0 0 0 0 1 0 0 0
- - 0.43 - - - - 0.61 - - -
- - 0.43 - - - - 0.61 - - -

0.3 ≤ ||vA|| < 0.4 0 0 0 0 0 0 2 0 0 0 0
- - - - - - 0.79 - - - -
- - - - - - 0.59 - - - -

0.2 ≤ ||vA|| < 0.3 0 1 0 0 0 0 0 0 0 0 0
- 0.38 - - - - - - - - -
- 0.38 - - - - - - - - -

0.1 ≤ ||vA|| < 0.2 1 0 0 0 0 0 0 0 0 1 0
0.49 - - - - - - - - 0.31 -
0.49 - - - - - - - - 0.31 -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 27 22 22 6 10 30 50 31 32 9 17

95

Comparison of Largest Non-Present Squash Vectors

Table D.8: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'R'.

Squash Vector 'R' Largest Squash Vector of Non-Present Class

Length Interval

A B C E K N O Q S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 1 0 0 4 2 1 0 0 0 2 0
0.13 - - 0.20 0.14 0.27 - - - 0.13 -
0.13 - - 0.11 0.14 0.27 - - - 0.10 -

0.8 ≤ ||vA|| < 0.9 10 13 1 11 59 10 2 12 3 8 13
0.28 0.28 0.13 0.30 0.52 0.33 0.16 0.33 0.19 0.40 0.39
0.09 0.10 0.13 0.09 0.12 0.12 0.12 0.10 0.09 0.12 0.11

0.7 ≤ ||vA|| < 0.8 4 7 2 8 17 5 0 9 1 6 4
0.51 0.58 0.34 0.43 0.52 0.37 - 0.51 0.29 0.36 0.38
0.14 0.23 0.25 0.19 0.16 0.18 - 0.19 0.29 0.15 0.25

0.6 ≤ ||vA|| < 0.7 4 3 4 4 4 3 0 3 0 1 0
0.68 0.54 0.53 0.38 0.49 0.37 - 0.56 - 0.30 -
0.24 0.26 0.38 0.21 0.26 0.22 - 0.39 - 0.30 -

0.5 ≤ ||vA|| < 0.6 0 1 2 0 2 0 0 2 0 0 0
- 0.30 0.70 - 0.36 - - 0.63 - - -
- 0.30 0.43 - 0.30 - - 0.57 - - -

0.4 ≤ ||vA|| < 0.5 1 1 0 0 2 0 0 0 0 0 0
0.31 0.68 - - 0.51 - - - - - -
0.31 0.68 - - 0.40 - - - - - -

0.3 ≤ ||vA|| < 0.4 0 1 0 0 0 0 0 1 0 0 0
- 0.65 - - - - - 0.65 - - -
- 0.65 - - - - - 0.65 - - -

0.2 ≤ ||vA|| < 0.3 2 0 0 0 0 0 0 0 0 0 0
0.64 - - - - - - - - - -
0.61 - - - - - - - - - -

0.1 ≤ ||vA|| < 0.2 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 22 26 27 9 86 19 2 27 4 17 17

96

Comparison of Largest Non-Present Squash Vectors

Table D.9: Overview of the squash vectors lengths for the remaining classes in compari-
son to the length of the squash vector for class 'S'.

Squash Vector 'S' Largest Squash Vector of Non-Present Class

Length Interval

A B C E K O Q R S X Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 4 21 2 12 7 4 2 10 18 7 7
0.11 0.30 0.21 0.16 0.18 0.12 0.09 0.20 0.20 0.22 0.14
0.08 0.11 0.11 0.10 0.07 0.08 0.09 0.08 0.08 0.09 0.08

0.8 ≤ ||vA|| < 0.9 1 34 5 23 4 7 10 19 7 13 9
0.13 0.43 0.20 0.41 0.21 0.20 0.52 0.28 0.35 0.29 0.29
0.13 0.10 0.13 0.08 0.12 0.09 0.12 0.07 0.10 0.08 0.11

0.7 ≤ ||vA|| < 0.8 1 4 1 4 0 0 5 5 0 3 0
0.19 0.35 0.29 0.43 - - 0.57 0.44 - 0.28 -
0.19 0.17 0.29 0.20 - - 0.16 0.17 - 0.22 -

0.6 ≤ ||vA|| < 0.7 0 2 1 0 0 0 0 0 0 1 0
- 0.41 0.28 - - - - - - 0.27 -
- 0.33 0.28 - - - - - - 0.27 -

0.5 ≤ ||vA|| < 0.6 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.4 ≤ ||vA|| < 0.5 0 0 1 0 0 0 0 0 0 0 0
- - 0.47 - - - - - - - -
- - 0.47 - - - - - - - -

0.3 ≤ ||vA|| < 0.4 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.2 ≤ ||vA|| < 0.3 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.1 ≤ ||vA|| < 0.2 0 0 0 0 0 1 0 0 0 1 0
- - - - - 0.54 - - - 0.46 -
- - - - - 0.54 - - - 0.46 -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 6 61 10 39 11 12 17 34 25 25 16

97

Comparison of Largest Non-Present Squash Vectors

Table D.10: Overview of the squash vectors lengths for the remaining classes in compar-
ison to the length of the squash vector for class 'X'.

Squash Vector 'X' Largest Squash Vector of Non-Present Class

Length Interval

A B C E K N O Q R S Z
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 10 2 11 4 13 4 0 3 2 5 3
0.17 0.10 0.14 0.17 0.42 0.22 - 0.11 0.09 0.14 0.12
0.07 0.07 0.08 0.07 0.09 0.10 - 0.08 0.09 0.09 0.08

0.8 ≤ ||vA|| < 0.9 12 3 6 10 53 12 1 9 15 12 20
0.28 0.39 0.17 0.28 0.37 0.57 0.14 0.19 0.26 0.31 0.31
0.09 0.09 0.07 0.07 0.09 0.07 0.14 0.08 0.09 0.08 0.08

0.7 ≤ ||vA|| < 0.8 5 0 0 1 12 1 0 0 3 1 3
0.30 - - 0.25 0.56 0.34 - - 0.30 0.38 0.30
0.14 - - 0.25 0.16 0.34 - - 0.25 0.38 0.30

0.6 ≤ ||vA|| < 0.7 0 1 0 0 4 0 0 0 0 0 1
- 0.43 - - 0.58 - - - - - 0.83
- 0.43 - - 0.34 - - - - - 0.83

0.5 ≤ ||vA|| < 0.6 0 0 0 0 5 0 0 1 0 2 0
- - - - 0.61 - - 0.32 - 0.50 -
- - - - 0.32 - - 0.32 - 0.50 -

0.4 ≤ ||vA|| < 0.5 0 0 0 0 0 0 1 0 0 0 0
- - - - - - 0.31 - - - -
- - - - - - 0.31 - - - -

0.3 ≤ ||vA|| < 0.4 0 0 0 0 1 0 0 0 0 1 0
- - - - 0.62 - - - - 0.39 -
- - - - 0.62 - - - - 0.39 -

0.2 ≤ ||vA|| < 0.3 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.1 ≤ ||vA|| < 0.2 0 0 0 0 1 1 0 0 0 0 1
- - - - 0.48 0.68 - - - - 0.50
- - - - 0.48 0.68 - - - - 0.50

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 27 6 17 15 89 18 2 13 20 21 28

98

Comparison of Largest Non-Present Squash Vectors

Table D.11: Overview of the squash vectors lengths for the remaining classes in compar-
ison to the length of the squash vector for class 'Z'.

Squash Vector 'Z' Largest Squash Vector of Non-Present Class

Length Interval

A B C E K N O Q R S X
Max. length of largest squash vector of non-present class
Min. length of largest squash vector of non-present class

0.9 ≤ ||vA|| < 1.0 8 8 9 7 5 9 2 5 16 8 16
0.12 0.16 0.21 0.16 0.16 0.14 0.13 0.33 0.25 0.15 0.25
0.07 0.10 0.09 0.09 0.08 0.08 0.12 0.09 0.09 0.08 0.10

0.8 ≤ ||vA|| < 0.9 6 10 23 11 10 1 3 2 34 3 19
0.26 0.31 0.45 0.34 0.39 0.17 0.19 0.15 0.40 0.16 0.37
0.08 0.10 0.11 0.08 0.10 0.17 0.17 0.12 0.08 0.13 0.10

0.7 ≤ ||vA|| < 0.8 0 1 10 1 3 0 0 3 3 1 4
- 0.55 0.53 0.27 0.41 - - 0.33 0.39 0.30 0.40
- 0.55 0.17 0.27 0.27 - - 0.18 0.19 0.30 0.20

0.6 ≤ ||vA|| < 0.7 0 1 0 1 0 0 0 1 0 0 2
- 0.43 - 0.39 - - - 0.21 - - 0.37
- 0.43 - 0.39 - - - 0.21 - - 0.21

0.5 ≤ ||vA|| < 0.6 0 0 0 2 0 0 0 0 0 1 1
- - - 0.60 - - - - - 0.65 0.49
- - - 0.43 - - - - - 0.65 0.49

0.4 ≤ ||vA|| < 0.5 0 0 0 1 0 0 0 0 0 2 0
- - - 0.34 - - - - - 0.37 -
- - - 0.34 - - - - - 0.35 -

0.3 ≤ ||vA|| < 0.4 0 1 1 0 0 0 0 0 0 1 0
- 0.65 0.65 - - - - - - 0.47 -
- 0.65 0.65 - - - - - - 0.47 -

0.2 ≤ ||vA|| < 0.3 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.1 ≤ ||vA|| < 0.2 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

0.0 ≤ ||vA|| < 0.1 0 0 0 0 0 0 0 0 0 0 0
- - - - - - - - - - -
- - - - - - - - - - -

Sum of Instances 14 21 43 23 18 10 5 11 53 16 42

99

Comparison of Largest Non-Present Squash Vectors

Image Number A1 A2 A3 A4

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vC|| = 0.89 ||vC|| = 0.88 ||vC|| = 0.83 ||vC|| = 0.82

Masked Prediction

||vnonpresent|| ||vQ|| = 0.23 ||vA|| = 0.20 ||vK|| = 0.23 ||vO|| = 0.29

Figure D.1: Comparison of masked predictions and unmasked predictions for class 'C',
and the predictions for 'incorrect' squash vectors

Image Number A5 A6 A7 A8

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vC|| = 0.75 ||vC|| = 0.63 ||vC|| = 0.63 ||vC|| = 0.60

Masked Prediction

||vnonpresent|| ||vZ|| = 0.37 ||vO|| = 0.30 ||vA|| = 0.48 ||vK|| = 0.52

Figure D.2: Comparison of masked predictions and unmasked predictions for class 'C',
and the predictions for 'incorrect' squash vectors

100

Comparison of Largest Non-Present Squash Vectors

Image Number A9 A10 A11 A12

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vC|| = 0.51 ||vC|| = 0.45 ||vC|| = 0.44 ||vC|| = 0.38

Masked Prediction

||vnonpresent|| ||vR|| = 0.70 ||vQ|| = 0.46 ||vO|| = 0.76 ||vO|| = 0.67

Masked Prediction

||vnonpresent|| ||vN || = 0.15 ||vN || = 0.29 ||vN || = 0.19 ||vQ|| = 0.21

Figure D.3: Comparison of masked predictions and unmasked predictions for class 'C',
and the predictions for 'incorrect' squash vectors

101

Comparison of Largest Non-Present Squash Vectors

Image Number A1 A2 A3 A4

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vK|| = 0.90 ||vK|| = 0.87 ||vK|| = 0.85 ||vK|| = 0.80

Masked Prediction

||vnonpresent|| ||vR|| = 0.24 ||vC|| = 0.62 ||vR|| = 0.29 ||vE|| = 0.60

Figure D.4: Comparison of masked predictions and unmasked predictions for class 'K',
and the predictions for 'incorrect' squash vectors

Image Number A5 A6 A7 A8

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vK|| = 0.77 ||vK|| = 0.72 ||vK|| = 0.68 ||vK|| = 0.63

Masked Prediction

||vnonpresent|| ||vQ|| = 0.38 ||vX|| = 0.21 ||vR|| = 0.31 ||vX|| = 0.42

Figure D.5: Comparison of masked predictions and unmasked predictions for class 'K',
and the predictions for 'incorrect' squash vectors

102

Comparison of Largest Non-Present Squash Vectors

Image Number A9 A10 A11 A12

Original

Unmasked Prediction

Masked Prediction

||vpresent|| ||vK|| = 0.57 ||vK|| = 0.52 ||vK|| = 0.44 ||vK|| = 0.28

Masked Prediction

||vnonpresent|| ||vR|| = 0.67 ||vX|| = 0.52 ||vC|| = 0.71 ||vC|| = 0.38

Figure D.6: Comparison of masked predictions and unmasked predictions for class 'K',
and the predictions for 'incorrect' squash vectors

103

Comparison of Largest Non-Present Squash Vectors

104

Bibliography

BIBLIOGRAPHY

[1] D. Lewandowski et al. “The influence of search engine optimization on Google’s re-

sults: A multi-dimensional approach for detecting SEO”. In: 13th ACM Web Science

Conference 2021. 2021, pp. 12–20.

[2] I. C. Drivas et al. “Big data analytics for search engine optimization”. In: Big Data

and Cognitive Computing 4.2 (2020), p. 5.

[3] M. P. Evans. “Analysing Google rankings through search engine optimization

data”. In: Internet research (2007).

[4] Y. Yuniarthe. “Application of artificial intelligence (AI) in search engine optimiza-

tion (SEO)”. In: 2017 International conference on soft computing, intelligent system and

information technology (ICSIIT). IEEE. 2017, pp. 96–101.

[5] K. Sekaran et al. “Design of optimal search engine using text summarization

through artificial intelligence techniques”. In: Telkomnika 18.3 (2020), pp. 1268–1274.

[6] S. Das et al. “Applications of artificial intelligence in machine learning: review and

prospect”. In: International Journal of Computer Applications 115.9 (2015).

[7] S. Thiebes et al. “Trustworthy artificial intelligence”. In: Electronic Markets 31.2 (June

2021), pp. 447–464. ISSN: 1422-8890. DOI: 10.1007/s12525-020-00441-4.

[8] P. Ala-Pietilä et al. Ethics guidelines for trustworthy AI. EU Publications, Apr. 2019.

DOI: 10.2759/346720.

[9] J. Sharma et al. “Deep Convolutional Neural Networks for Fire Detection in Im-

ages”. In: Engineering Applications of Neural Networks. Ed. by G. Boracchi et al.

Cham: Springer International Publishing, 2017, pp. 183–193. ISBN: 978-3-319-65172-

9.

[10] R. L. Galvez et al. “Object Detection Using Convolutional Neural Networks”. In:

TENCON 2018 - 2018 IEEE Region 10 Conference. 2018, pp. 2023–2027. DOI: 10.1109/

TENCON.2018.8650517.

[11] T. Lei et al. “Landslide Inventory Mapping From Bitemporal Images Using Deep

Convolutional Neural Networks”. In: IEEE Geoscience and Remote Sensing Letters

16.6 (2019), pp. 982–986. DOI: 10.1109/LGRS.2018.2889307.

105

Bibliography

[12] L. Kang et al. “Convolutional Neural Networks for No-Reference Image Quality

Assessment”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). June 2014.

[13] R. R. Selvaraju et al. “Grad-CAM: Visual Explanations from Deep Networks via

Gradient-Based Localization”. In: 2017 IEEE International Conference on Computer

Vision (ICCV). 2017, pp. 618–626. DOI: 10.1109/ICCV.2017.74.

[14] K. Simonyan et al. “Deep inside convolutional networks: Visualising image clas-

sification models and saliency maps”. In: In Workshop at International Conference on

Learning Representations. Citeseer. 2014.

[15] M. T. Ribeiro et al. “” Why should i trust you?” Explaining the predictions of any

classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowl-

edge discovery and data mining. 2016, pp. 1135–1144.

[16] S. Sabour et al. “Dynamic Routing between Capsules”. In: Proceedings of the 31st In-

ternational Conference on Neural Information Processing Systems. NIPS’17. Long Beach,

California, USA: Curran Associates Inc., 2017, pp. 3859–3869. ISBN: 9781510860964.

[17] C. Gregory et al. “EMNIST: an extension of MNIST to handwritten letters”. In:

CoRR abs/1702.05373 (2017). URL: http://arxiv.org/abs/1702.05373.

[18] A. Holzinger et al. “Current Advances, Trends and Challenges of Machine Learn-

ing and Knowledge Extraction: From Machine Learning to Explainable AI”. In:

Machine Learning and Knowledge Extraction. Ed. by A. Holzinger et al. Springer In-

ternational Publishing, 2018, pp. 1–8. ISBN: 978-3-319-99740-7.

[19] M. T. Ribeiro et al. “Anchors: High-precision model-agnostic explanations”. In: Pro-

ceedings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[20] Y. LeCun et al. “MNIST handwritten digit database”. In: (2010). URL: http://yann.

lecun.com/exdb/mnist/.

[21] J. Springenberg et al. “Striving for Simplicity: The All Convolutional Net”. In:

ICLR (workshop track). 2015. URL: http://lmb.informatik.uni-freiburg.de/

Publications/2015/DB15a.

[22] M. D. Zeiler et al. “Visualizing and understanding convolutional networks”. In:

European conference on computer vision. Springer. 2014, pp. 818–833.

106

Bibliography

[23] K. H. Jin. “Deep Block Transform for Autoencoders”. In: IEEE Signal Processing Let-

ters 28 (2021), pp. 1016–1019.

[24] W. Yang et al. “Towards Rich Feature Discovery With Class Activation Maps Aug-

mentation for Person Re-Identification”. In: 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2019, pp. 1389–1398. DOI: 10.1109/CVPR.

2019.00148.

[25] M. Lin et al. Network In Network. 2014. arXiv: 1312.4400 [cs.NE].

[26] A. F. Agarap. “Deep learning using rectified linear units (relu)”. In: arXiv preprint

arXiv:1803.08375 (2018).

[27] H. Geoffrey E. Geoffrey Hinton: What is wrong with convolutional neural nets? Sept. 26,

2017. URL: https://www.youtube.com/watch?v=Jv1VDdI4vy4.

[28] S. Birchfield. “Image Processing and Analysis”. In: Cengage Learning, 2016, p. 165.

ISBN: 9781337515627.

[29] V. Dumoulin et al. A guide to convolution arithmetic for deep learning. 2018. arXiv:

1603.07285 [stat.ML].

[30] S. Narayan. “The generalized sigmoid activation function: Competitive super-

vised learning”. In: Information Sciences 99.1 (1997), pp. 69–82. ISSN: 0020-0255. DOI:

https://doi.org/10.1016/S0020- 0255(96)00200- 9. URL: https://www.

sciencedirect.com/science/article/pii/S0020025596002009.

[31] F. Chollet et al. Keras. https://github.com/fchollet/keras. 2015.

[32] B. Xu et al. “Empirical Evaluation of Rectified Activations in Convolutional Net-

work”. In: CoRR abs/1505.00853 (2015). arXiv: 1505.00853. URL: http://arxiv.

org/abs/1505.00853.

[33] F. Chollet et al. Lambda layer. June 1, 2021. URL: https://keras.io/api/layers/

core_layers/lambda/.

[34] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

tf.reshape. July 22, 2021. URL: https://www.tensorflow.org/api_docs/python/

tf/reshape.

107

Bibliography

[35] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

tf.keras.layers.Layer. July 28, 2021. URL: https://www.tensorflow.org/api_docs/

python/tf/keras/layers/Layer.

[36] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

tf.tile. July 27, 2021. URL: https://www.tensorflow.org/api_docs/python/tf/

tile.

[37] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

tf.stack. July 27, 2021. URL: https://www.tensorflow.org/api_docs/python/tf/

stack.

[38] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

tf.expand dims. July 23, 2021. URL: https://www.tensorflow.org/api_docs/

python/tf/expand_dims.

[39] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

tf.linalg.matmul. July 23, 2021. URL: https://www.tensorflow.org/api_docs/

python/tf/linalg/matmul.

[40] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

tf.norm. May 28, 2021. URL: https://www.tensorflow.org/api_docs/python/tf/

norm.

[41] M. Abadi et al. Eager execution — TensorFlow Core v2.5.0. June 6, 2021. URL: https:

//www.tensorflow.org/guide/eager?hl=en.

[42] M. Abadi et al. Introduction to graphs and tf.function — TensorFlow Core v2.5.0. June 6,

2021. URL: https://www.tensorflow.org/guide/intro_to_graphs?hl=en.

[43] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

tf.io.write file. July 11, 2021. URL: https : / / www . tensorflow . org / api _ docs /

python/tf/io/write_file.

[44] M. Abadi et al. tf.keras.optimizers.schedules.ExponentialDecay. Aug. 2, 2021. URL:

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/

schedules/ExponentialDecay.

[45] Z. Wang et al. “Image quality assessment: from error visibility to structural simi-

larity”. In: IEEE transactions on image processing 13.4 (2004), pp. 600–612.

108

Bibliography

[46] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.

109

